17 research outputs found

    Clinically adjudicated deceased donor acute kidney injury and graft outcomes

    Get PDF
    Background: Acute kidney injury (AKI) in deceased donors is not associated with graft failure (GF). We hypothesize that hemodynamic AKI (hAKI) comprises the majority of donor AKI and may explain this lack of association. Methods: In this ancillary analysis of the Deceased Donor Study, 428 donors with available charts were selected to identify those with and without AKI. AKI cases were classified as hAKI, intrinsic (iAKI), or mixed (mAKI) based on majority adjudication by three nephrologists. We evaluated the associations between AKI phenotypes and delayed graft function (DGF), 1-year eGFR and GF. We also evaluated differences in urine biomarkers among AKI phenotypes. Results: Of the 291 (68%) donors with AKI, 106 (36%) were adjudicated as hAKI, 84 (29%) as iAKI and 101 (35%) as mAKI. Of the 856 potential kidneys, 669 were transplanted with 32% developing DGF and 5% experiencing GF. Median 1-year eGFR was 53 (IQR: 41-70) ml/min/1.73m2. Compared to non-AKI, donors with iAKI had higher odds DGF [aOR (95%CI); 4.83 (2.29, 10.22)] and had lower 1-year eGFR [adjusted B coefficient (95% CI): -11 (-19, -3) mL/min/1.73 m2]. hAKI and mAKI were not associated with DGF or 1-year eGFR. Rates of GF were not different among AKI phenotypes and non-AKI. Urine biomarkers such as NGAL, LFABP, MCP-1, YKL-40, cystatin-C and albumin were higher in iAKI. Conclusion: iAKI was associated with higher DGF and lower 1-year eGFR but not with GF. Clinically phenotyped donor AKI is biologically different based on biomarkers and may help inform decisions regarding organ utilization

    Predicting patients with false negative SARS-CoV-2 testing at hospital admission: A retrospective multi-center study.

    No full text
    ImportanceFalse negative SARS-CoV-2 tests can lead to spread of infection in the inpatient setting to other patients and healthcare workers. However, the population of patients with COVID who are admitted with false negative testing is unstudied.ObjectiveTo characterize and develop a model to predict true SARS-CoV-2 infection among patients who initially test negative for COVID by PCR.DesignRetrospective cohort study.SettingFive hospitals within the Yale New Haven Health System between 3/10/2020 and 9/1/2020.ParticipantsAdult patients who received diagnostic testing for SARS-CoV-2 virus within the first 96 hours of hospitalization.ExposureWe developed a logistic regression model from readily available electronic health record data to predict SARS-CoV-2 positivity in patients who were positive for COVID and those who were negative and never retested.Main outcomes and measuresThis model was applied to patients testing negative for SARS-CoV-2 who were retested within the first 96 hours of hospitalization. We evaluated the ability of the model to discriminate between patients who would subsequently retest negative and those who would subsequently retest positive.ResultsWe included 31,459 hospitalized adult patients; 2,666 of these patients tested positive for COVID and 3,511 initially tested negative for COVID and were retested. Of the patients who were retested, 61 (1.7%) had a subsequent positive COVID test. The model showed that higher age, vital sign abnormalities, and lower white blood cell count served as strong predictors for COVID positivity in these patients. The model had moderate performance to predict which patients would retest positive with a test set area under the receiver-operator characteristic (ROC) of 0.76 (95% CI 0.70-0.83). Using a cutpoint for our risk prediction model at the 90th percentile for probability, we were able to capture 35/61 (57%) of the patients who would retest positive. This cutpoint amounts to a number-needed-to-retest range between 15 and 77 patients.Conclusion and relevanceWe show that a pragmatic model can predict which patients should be retested for COVID. Further research is required to determine if this risk model can be applied prospectively in hospitalized patients to prevent the spread of SARS-CoV-2 infections
    corecore