13 research outputs found

    Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver DiseaseSummary

    Get PDF
    Background & Aims: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide. Currently, no specific pharmacologic therapy is available for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of hepatic lipid partitioning and NAFLD/NASH. Here, we studied the metabolic benefit of liver-specific STK25 inhibitors on NAFLD development and progression in a mouse model of diet-induced obesity. Methods: We developed a hepatocyte-specific triantennary N-acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide (ASO) targeting Stk25 and evaluated its effect on NAFLD features in mice after chronic exposure to dietary lipids. Results: We found that systemic administration of hepatocyte-targeting GalNAc-Stk25 ASO in obese mice effectively ameliorated steatosis, inflammatory infiltration, hepatic stellate cell activation, nutritional fibrosis, and hepatocellular damage in the liver compared with mice treated with GalNAc-conjugated nontargeting ASO, without any systemic toxicity or local tolerability concerns. We also observed protection against high-fat-diet–induced hepatic oxidative stress and improved mitochondrial function with Stk25 ASO treatment in mice. Moreover, GalNAc-Stk25 ASO suppressed lipogenic gene expression and acetyl-CoA carboxylase protein abundance in the liver, providing insight into the molecular mechanisms underlying repression of hepatic steatosis. Conclusions: This study provides in vivo nonclinical proof-of-principle for the metabolic benefit of liver-specific inhibition of STK25 in the context of obesity and warrants future investigations to address the therapeutic potential of GalNAc-Stk25 ASO in the prevention and treatment of NAFLD. Keywords: NAFLD, NASH, Hepatic Steatosis, Liver Fibrosis, Antisense Oligonucleotide Therap

    Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD

    Inhibition of Protein Tyrosine Phosphatase-1B with Antisense Oligonucleotides Improves Insulin Sensitivity and Increases Adiponectin Concentrations in Monkeys

    Get PDF
    Protein tyrosine phosphatase (PTP)-1B antagonizes insulin signaling and is a potential therapeutic target for insulin resistance associated with obesity and type 2 diabetes. To date, studies of PTP-1B have been limited by the availability of specific antagonists; however, treatment of rodents with antisense oligonucleotides (ASOs) directed against PTP-1B improves insulin sensitivity, inhibits lipogenic gene expression, and reduces triglyceride accumulation in liver and adipose tissue. Here we investigated ASO-mediated PTP-1B inhibition in primates. First, PTP-1B ASO (ISIS 113715) dose-dependently inhibited PTP-1B mRNA and protein expression in cultured monkey hepatocytes. Subcutaneous administration of ISIS 113715 reduced PTP-1B mRNA expression in liver and adipose tissue of normal-weight monkeys by 40–50% and improved insulin sensitivity during an iv glucose tolerance test (IVGTT). In obese, insulin-resistant rhesus monkeys, treatment with 20 mg/kg ISIS 113715 for 4 wk reduced fasting concentrations of insulin and glucose and reduced insulin responses during an IVGTT. In these animals, adiponectin concentrations were also increased by 70%, most of which was an increase of high-molecular-weight oligomers. These effects were not observed in monkeys on a lower, dose-escalation regimen (1–10 mg/kg over 9 wk). Overall, the increase of adiponectin concentrations during ISIS 113715 treatment was correlated with the lowering of insulin responses during IVGTT (r = −0.47, P = 0.042). These results indicate that inhibition of PTP-1B with ASOs such as ISIS 113715 may be a viable approach for the treatment and prevention of obesity-associated insulin resistance and type 2 diabetes because they potently increase adiponectin concentrations in addition to improving insulin sensitivity
    corecore