2,726 research outputs found

    First record of an Odontaspidid shark in Ascension Island waters

    Get PDF
    The occurrence of the poorly understood shark species Odontapsis ferox is reported at an oceanic seamount in the central south Atlantic, within the Exclusive Economic Zone of Ascension Island. The presence of the species at this location is confirmed by the discovery of a tooth embedded in scientific equipment, and footage of at least one animal on autonomous underwater video. The new record of this shark species at this location demonstrates the knowledge gaps which still exist at many remote, oceanic structures and their candidacy for status as important conservation areas.info:eu-repo/semantics/publishedVersio

    FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and L-ascorbic acid in mango (Mangifera indica L.) fruit pulp

    Get PDF
    Mango fruits contain substantial vitamins and dietary fibre. Vitamins vary among and within fruits depending on cultivar type and ripening stage. Conventional techniques of vitamins analysis are based on High Pressure Liquid Chromatography, which are costly and laborious. This study evaluated the potential of Fourier transform infrared-diffuse reflectance spectroscopy (FTIR-DRIFTS) technique in predicting β-carotene, α-tocopherol and L-ascorbic acid in pulps of four mango cultivar types (‘Apple’, ‘Kent’, ‘Ngowe’, and ‘Tommy Atkins’). Combination of ran dom forest (RF) and first derivative spectra developed the predictive models. Factorial ANOVA examined the interaction effect of cultivar type, site (‘Thika’, ‘Embu’ and ‘Machakos), and fruit canopy position (sun exposed/within crown) on β-carotene, α-tocopherol and L-ascorbic acid contents. RF Models gave R2 = 0.97, RMSE = 2.27, RPD = 0.72 for β-carotene; R2 = 0.98, RMSE = 0.26, RPD = 0.30 for α-tocopherol and R2 = 0.96, RMSE = 0.51, RPD = 1.96 for L-ascorbic acid. Generally cultivar type affected vitamin C, F (3, 282) = 7.812, p < 0.05. Apple and Tommy Atkins had higher mean vitamins than Ngowe and Kent. In Machakos, within canopy fruits had higher β-carotene than sun-exposed fruits, F (5, 257) = 2.328, p = 0.043. However, interactions between fruit position, site and cultivar did not affect α-tocopherol and vitamin C. In Thika, Tommy Atkins at fully ripe stage had higher vitamin C than at intermediate maturity stage, F (2, 143) = 7.328, p = 0.01. These results show that FTIR-DRIFTS spectroscopy is a high-throughput method that can be used to predict mango fruit vitamins of in a large data set

    A simple field based method for rapid wood density estimation for selected tree species in Western Kenya

    Get PDF
    Wood density is an important variable for accurate quantification of woody biomass and carbon stocks. Conventional destructive methods for wood density estimation are resource intensive, prohibiting their use, limiting the application of approaches that would minimize uncertainties in tree biomass estimates. We tested an alternative method involving tree coring with a carpenter's auger to estimate wood density of seven tropical tree species in Western Kenya. We used conventional water immersion method to validate results from the auger core method. The mean densities (and 95% confidence intervals) ranged from 0.36 g cm−3 (0.25–0.47) to 0.67 g cm−3 (0.61–0.73) for the auger core method, and 0.46 g cm−3 (0.42–0.50) to 0.67 g cm−3 (0.61–0.73) for the water immersion method. The auger core and water immersion methods were not significantly different for four out of seven tree species namely; Acacia mearnsii, Mangifera indica, Eucalyptus grandis and Grevillea robusta. However, wood densities estimated from the auger core method were lower (t (61) = 7.992, P = <0.001). The ease of the auger core method application, as a non-destructive method in acquiring wood density data, is a worthy alternative in biomass and carbon stocks quantification. This method could protect trees outside forests found in most parts of Africa

    On multi-path longitudinal spin relaxation in brain tissue

    Full text link
    The purpose of this paper is to confirm previous reports that identified magnetization transfer (MT) as an inherent driver of longitudinal relaxation in brain tissue by asserting a substantial difference between the T1T_1 relaxation times of the free and the semi-solid spin pools. Further, we aim to identify an avenue towards the quantification of these relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e. with a nominal resolution of 1mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned 4 people with relapsing-remitting multiple sclerosis (MS) and 4 healthy controls with this pulse sequence and estimated T1f≈1.90T_1^f \approx 1.90s and T1s≈0.327T_1^s \approx 0.327s for the free and semi-solid spin pool of healthy WM, respectively, confirming previous reports and questioning the commonly used assumptions T1s=T1fT_1^s = T_1^f or T1s=1T_1^s = 1s. Further, we estimated a fractional size of the semi-solid spin pool of m0s≈0.202m_0^s \approx 0.202, which is larger than previously assumed. An analysis of T1fT_1^f in normal appearing white matter revealed statistically significant differences between individuals with MS and controls. In conclusion, we confirm that longitudinal spin relaxation in brain tissue is dominated by MT and that the hybrid state facilitates a voxel-wise fit of the unconstrained MT model, which enables the analysis of subtle neurodegeneration

    High Angular Resolution Observations of Four Candidate BLAST High-Mass Starless Cores

    Full text link
    We discuss high-angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 micron. Four of these cores, with no IRAS-PSC or MSX counterparts, were observed with the NRAO Very Large Array (VLA) in the NH3(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (Tk <~ 14K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within ~1km/s. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.Comment: Submitted to the Astrophysical Journal on January 22, 2010. Accepted for publication on April 15, 2010. The paper has 21 pages and 17 figures

    The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gβγ-dependent modulation of TRPV1 channel

    Get PDF
    Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain largely unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gα(i)-βγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is co-expressed in TRPV1-expressing mouse DRG neurons. NPR-C can be co-immunoprecipitated with Gα(i), and CNP treatment induced translocation of PKCε to the plasma membrane of these neurons, which was inhibited by pertussis toxin pre-treatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons, and increased neuronal firing frequency, an effect that was absent in DRG neurons from TRPV1(−/−) mice. CNP-induced sensitization of TRPV1 activity was attenuated by pre-treatment of DRG neurons with the specific inhibitors of Gβγ, PLCβ or PKC, but not of PKA, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Further, CNP injection into mouse hind paw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gβγ or TRPV1, and was also absent in TRPV1(−/−) mice. Thus, our work identifies the Gβγ-PLCβ-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity

    ECG measurement parameters of athletes are reliable when made with a smartphone based ECG device

    Get PDF
    Pre-participation cardiac screening including electrocardiogram (ECG) is a subject of controversy among sports medicine practitioners. Opponents of pre-participation ECG screen site concerns regarding the cost and accuracy of the testing. Recently, a single lead ECG accessory has become available for use with smartphones. The purpose of this study was to evaluate the between and within rater validity and reliability of the Kardia device in recording the ECG parameters rate, rhythm, and PR, QRS, and QT intervals. The ECG parameter made with the smartphone were also compared to same measures made using a 12 lead electrocardiograph. This investigation used a repeated measures cross-sectional design. The investigation was conducted in 2 separate phases using separate participant samples. Phase 1 (N=10) was used to determine the within rater reliability with the Kardia device. Phase 2 (N=12) was used to determine the reliability between the Kardia device and the 12 lead electrocardiograph. The between rater and between device reliability for the rate, QT interval and QRS duration parameters ranged good to very good (ICC = 0.667 – 0.981). The current investigation showed that the reliability of the ECG parameters measured using the smartphone technology ranged from good to very good. This paper serves as support for a technological advancement that will help advance the debate on the utility of ECG testing as part of the athletic pre-participation physical

    A major radio outburst in III Zw 2 with an extremely inverted, millimeter-peaked spectrum

    Full text link
    III Zw 2 is a spiral galaxy with an optical spectrum and faint extended radio structure typical of a Seyfert galaxy, but also with an extremely variable, blazar-like radio core. We have now discovered a new radio flare where the source has brightened more than twenty-fold within less than two years. A broad-band radio spectrum between 1.4 and 666 GHz shows a textbook-like synchrotron spectrum peaking at 43 GHz, with a self-absorbed synchrotron spectral index +2.5 at frequencies below 43 GHz and an optically thin spectral index -0.75 at frequencies above 43 GHz. The outburst spectrum can be well fitted by two homogenous, spherical components with equipartition sizes of 0.1 and 0.2 pc at 43 and 15 GHz, and with magnetic fields of 0.4 and 1 Gauss. VLBA observations at 43 GHz confirm this double structure and these sizes. Time scale arguments suggest that the emitting regions are shocks which are continuously accelerating particles. This could be explained by a frustrated jet scenario with very compact hotspots. Similar millimeter-peaked spectrum (MPS) sources could have escaped our attention because of their low flux density at typical survey frequencies and their strong variability.Comment: ApJ Letters, in press, (AAS)LaTeX, 3 figures, available at http://www2.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#iiizw2 or in a few weeks at http://www.mpifr-bonn.mpg.de/staff/falcke/publications.html#iiizw

    Improvements in Awareness and Testing Have Led to a Threefold Increase Over 10 Years in the Identification of Monogenic Diabetes in the U.K

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Diabetes Association via the DOI in this recordAims/hypothesis: Maturity Onset Diabetes of the Young (MODY) is a rare monogenic form of diabetes. In 2009, >80% of UK cases were estimated to be misdiagnosed. Since then, there have been a number of initiatives to improve the awareness and detection of MODY including education initiatives (Genetic Diabetes Nurse (GDN) programme), the MODY probability calculator, and targeted next generation sequencing (tNGS). We aimed to examine how the estimated prevalence of MODY, and other forms of monogenic diabetes diagnosed outside the neonatal period, has changed over time and how the initiatives have impacted case finding. Research design and Methods: UK referrals for genetic testing for monogenic diabetes diagnosed >1y of age from 01/01/1996 to 31/12/2019 were examined. Positive-test rates were compared for referrals reporting involvement of the GDNs/MODY calculator with those that did not. Results: A diagnosis of monogenic diabetes was confirmed in 3860 individuals, >3-fold higher than 2009 (01/01/1996-28/02/2009; n=1177). Median age at diagnosis in probands was 21y. GDN involvement was reported in 21% of referrals; these referrals had a higher positive-test rate than those without GDN involvement (32% v 23%, p<0.001). MODY calculator usage was indicated on 74% of eligible referrals since 2014; these referrals had a higher positive-test rate than those not using the calculator (33% v 25%, p=0.001). 410 (10.6%) cases were identified through tNGS. Monogenic diabetes prevalence was estimated to be 248 cases/million (double that estimated in 2009 due to increased case-finding). 3 Conclusions: Since 2009, referral rates and case diagnosis have increased three-fold. This is likely to be the consequence of tNGS, GDN education and the MODY calculator
    • …
    corecore