75 research outputs found
Comorbid substance abuse and brain morphology in recent-onset psychosis
The aim of the presented study was to compare schizophrenia and schizoaffective patients early in the course of the disease with and without comorbid substance abuse disorder (SUD vs. NSUD) with regard to brain morphology. In a prospective design 41 patients (20 SUD vs. 21 NSUD) diagnosed as recent-onset schizophrenia or schizoaffective disorder consecutively admitted to hospital received standardized psychopathological evaluation (BPRS, SANS, MADRS, CGI, GAF) and MRI scanning with volumetric measurement of superior temporal gyrus (STG), amygdala-hippocampal complex, and cingulum. Patients with SUD (primarily cannabis) were significantly younger, predominantly male and had a lower socioeconomic status. Despite less attentional impairment (SANS subscore) and elevated anxiety/depression (BPRS subscore) in patients with SUD compared to NSUD, no other psychopathological differences could be detected. There were no differences in the assessed temporolimbic brain morphology between the two subgroups. In conclusion, in this study substance abuse in recent-onset psychosis had no effect on brain morphology and the earlier onset of psychosis in patients with comorbid SUD could not be explained by supposed accentuated brain abnormalities in temporolimbic regions
Interfering with Glycolysis Causes Sir2-Dependent Hyper-Recombination of Saccharomyces cerevisiae Plasmids
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH–encoding plasmid when the NAD+ metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux
Phencyclidine (PCP)-Induced Disruption in Cognitive Performance is Gender-Specific and Associated with a Reduction in Brain-Derived Neurotrophic Factor (BDNF) in Specific Regions of the Female Rat Brain
Phencyclidine (PCP), used to mimic certain aspects of schizophrenia, induces sexually dimorphic, cognitive deficits in rats. In this study, the effects of sub-chronic PCP on expression of brain-derived neurotrophic factor (BDNF), a neurotrophic factor implicated in the pathogenesis of schizophrenia, have been evaluated in male and female rats. Male and female hooded-Lister rats received vehicle or PCP (n = 8 per group; 2 mg/kg i.p. twice daily for 7 days) and were tested in the attentional set shifting task prior to being sacrificed (6 weeks post-treatment). Levels of BDNF mRNA were measured in specific brain regions using in situ hybridisation. Male rats were less sensitive to PCP-induced deficits in the extra-dimensional shift stage of the attentional set shifting task compared to female rats. Quantitative analysis of brain regions demonstrated reduced BDNF levels in the medial prefrontal cortex (p < 0.05), motor cortex (p < 0.01), orbital cortex (p < 0.01), olfactory bulb (p < 0.05), retrosplenial cortex (p < 0.001), frontal cortex (p < 0.01), parietal cortex (p < 0.01), CA1 (p < 0.05) and polymorphic layer of dentate gyrus (p < 0.05) of the hippocampus and the central (p < 0.01), lateral (p < 0.05) and basolateral (p < 0.05) regions of the amygdaloid nucleus in female PCP-treated rats compared with controls. In contrast, BDNF was significantly reduced only in the orbital cortex and central amygdaloid region of male rats (p < 0.05). Results suggest that blockade of NMDA receptors by sub-chronic PCP administration has a long-lasting down-regulatory effect on BDNF mRNA expression in the female rat brain which may underlie some of the behavioural deficits observed post PCP administration
TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders
TCF4 is involved in neurodevelopment, and intergenic and intronic variants in or close to the TCF4 gene have been associated with susceptibility to schizophrenia. However, the functional role of TCF4 at the level of gene expression and relationship to severity of core psychotic phenotypes are not known. TCF4 mRNA expression level in peripheral blood was determined in a large sample of patients with psychosis spectrum disorders (n=596) and healthy controls (n=385). The previously identified TCF4 risk variants (rs12966547 (G), rs9960767 (C), rs4309482 (A), rs2958182 (T) and rs17512836 (C)) were tested for association with characteristic psychosis phenotypes, including neurocognitive traits, psychotic symptoms and structural magnetic resonance imaging brain morphometric measures, using a linear regression model. Further, we explored the association of additional 59 single nucleotide polymorphisms (SNPs) covering the TCF4 gene to these phenotypes. The rs12966547 and rs4309482 risk variants were associated with poorer verbal fluency in the total sample. There were significant associations of other TCF4 SNPs with negative symptoms, verbal learning, executive functioning and age at onset in psychotic patients and brain abnormalities in total sample. The TCF4 mRNA expression level was significantly increased in psychosis patients compared with controls and positively correlated with positive- and negative-symptom levels. The increase in TCF4 mRNA expression level in psychosis patients and the association of TCF4 SNPs with core psychotic phenotypes across clinical, cognitive and brain morphological domains support that common TCF4 variants are involved in psychosis pathology, probably related to abnormal neurodevelopment
Neurexin-1 and Frontal Lobe White Matter: An Overlapping Intermediate Phenotype for Schizophrenia and Autism Spectrum Disorders
Background: Structural variation in the neurexin-1 (NRXN1) gene increases risk for both autism spectrum disorders (ASD) and schizophrenia. However, the manner in which NRXN1 gene variation may be related to brain morphology to confer risk for ASD or schizophrenia is unknown. Method/Principal Findings: 53 healthy individuals between 18–59 years of age were genotyped at 11 single nucleotide polymorphisms of the NRXN1 gene. All subjects received structural MRI scans, which were processed to determine cortical gray and white matter lobar volumes, and volumes of striatal and thalamic structures. Each subject’s sensorimotor function was also assessed. The general linear model was used to calculate the influence of genetic variation on neural and cognitive phenotypes. Finally, in silico analysis was conducted to assess potential functional relevance of any polymorphisms associated with brain measures. A polymorphism located in the 39 untranslated region of NRXN1 significantly influenced white matter volumes in whole brain and frontal lobes after correcting for total brain volume, age and multiple comparisons. Follow-up in silico analysis revealed that this SNP is a putative microRNA binding site that may be of functional significance in regulating NRXN1 expression. This variant also influenced sensorimotor performance, a neurocognitive function impaired in both ASD and schizophrenia. Conclusions: Our findings demonstrate that the NRXN1 gene, a vulnerability gene for SCZ and ASD, influences brai
Chitosan–Starch–Keratin composites: Improving thermo-mechanical and degradation properties through chemical modification
The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresChitosan–starch polymers are reinforced with different keratin materials obtained from chicken feather. Keratin materials are treated with sodium hydroxide; the modified surfaces are rougher in comparison with untreated surfaces, observed by Scanning Electron Microscopy. The results obtained by Differential Scanning Calorimetry show an increase in the endothermic peak related to water evaporation of the films from 92 °C (matrix) up to 102–114 °C (reinforced composites). Glass transition temperature increases from 126 °C in the polymer matrix up to 170–200 °C for the composites. Additionally, the storage modulus in the composites is enhanced up to 1614 % for the composites with modified ground quill, 2522 % for composites with modified long fiber and 3206 % for the composites with modified short fiber. The lysozyme test shows an improved in the degradability rate, the weight loss of the films at 21 days is reduced from 73 % for chitosan-starch matrix up to 16 % for the composites with 5wt% of quill; but all films show a biodegradable character depending on keratin type and chemical modification. The outstanding properties related to the addition of treated keratin materials show that these natural composites are a remarkable alternative to potentiat-ing chitosan–starch films with sustainable featuresUniversidad Autónoma del Estado de México Tecnológico Nacional de México, Instituto Tecnológico de Querétaro Universidad Nacional Autónoma de México Tecnológico Nacional de México, Instituto Tecnológico de Celaya Universidad Autónoma de Cd. Juáre
Directed Self-Assembly: Expectations and Achievements
Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects
- …