50 research outputs found

    Structure-function Studies of Bovine Heart Mitochondrial Succinate-q Reductase

    Get PDF
    Biochemistry and Molecular Biolog

    Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection

    Get PDF
    On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy

    Distinct lung microbiota associate with HIV-associated chronic lung disease in children.

    Get PDF
    Chronic lung disease (CLD) is a common co-morbidity for HIV-positive children and adolescents on antiretroviral therapy (ART) in sub-Saharan Africa. In this population, distinct airway microbiota may differentially confer risk of CLD. In a cross-sectional study of 202 HIV-infected children aged 6-16 years in Harare, Zimbabwe, we determined the association of sputum microbiota composition (using 16S ribosomal RNA V4 gene region sequencing) with CLD defined using clinical, spirometric, or radiographic criteria. Forty-two percent of children were determined to have CLD according to our definition. Dirichlet multinomial mixtures identified four compositionally distinct sputum microbiota structures. Patients whose sputum microbiota was dominated by Haemophilus, Moraxella or Neisseria (HMN) were at 1.5 times higher risk of CLD than those with Streptococcus or Prevotella (SP)-dominated microbiota (RR = 1.48, p = 0.035). Cell-free products of HMN sputum microbiota induced features of epithelial disruption and inflammatory gene expression in vitro, indicating enhanced pathogenic potential of these CLD-associated microbiota. Thus, HIV-positive children harbor distinct sputum microbiota, with those dominated by Haemophilus, Moraxella or Neisseria associated with enhanced pathogenesis in vitro and clinical CLD

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Characterizing nonlocality of pure symmetric three-qubit states

    Full text link
    We explore nonlocality of three-qubit pure symmetric states shared between Alice, Bob and Charlie using the Clauser-Horne-Shimony-Holt (CHSH) inequality. We make use of the elegant parametrization in the canonical form of these states, proposed by Meill and Meyer (Phys. Rev. A, 96, 062310 (2017)) based on Majorana geometric representation. The reduced two-qubit states, extracted from an arbitrary pure entangled symmetric three-qubit state do not violate the CHSH inequality and hence they are CHSH-local. However, when Alice and Bob perform a CHSH test, after conditioning over measurement results of Charlie, nonlocality of the state is revealed. We have also shown that two different families of three-qubit pure symmetric states, consisting of two and three distinct spinors (qubits) respectively, can be distinguished based on the strength of violation in the conditional CHSH nonlocality test. Furthermore, we identify six of the 46 classes of tight Bell inequalities in the three-party, two-setting, two-outcome i.e., (3,2,2) scenario (Phys. Rev. A 94, 062121 (2016)). Among the two inequivalent families of three-qubit pure symmetric states, only the states belonging to three distinct spinor class show maximum violations of these six tight Bell inequalities.Comment: 11 pages, 9 figures, revised versio

    Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.

    No full text
    Ubiquitination of G protein-coupled receptors (GPCRs) is an important dynamic posttranslational modification that has been linked to the intracellular trafficking of internalized GPCRs to lysosomes. Ubiquitination of GPCRs is mediated by specific E3 ubiquitin ligases that are scaffolded by the adaptor proteins called β-arrestins. Traditionally, detection of GPCR ubiquitination is achieved by using ubiquitin antibodies to Western blot immunoprecipitates of detergent-solubilized GPCRs expressed in heterologous cells. However, studies have also shown that bioluminescence resonance energy transfer (BRET)-based techniques can reveal ubiquitination of GPCRs in intact cells and in real time. This chapter describes a step-by-step protocol to evaluate ubiquitination of GPCRs using the BRET methodology
    corecore