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How carvedilol does not activate
β2-adrenoceptors

Robert J. Lefkowitz 1,2,3 , Howard A. Rockman 1 , Paul J. Shim 1,
Samuel Liu 1, Seungkirl Ahn 1, Biswaranjan Pani1, Sudarshan Rajagopal 1,3,
Sudha K. Shenoy1, Michel Bouvier 4, Jeffrey L. Benovic5, Stephen B. Liggett 6,
Robert R. Ruffolo7, Michael R. Bristow 8 & Milton Packer9,10

ARISING FROM T. Benkel et al. Nature Communications https://doi.org/10.1038/
s41467-022-34765-w (2022)

The introduction of β-adrenergic receptor blockers, “β-blockers”, as a
treatment for heart failure decades ago was a major advance in car-
diovascular medicine1–4. Moreover, it has been clear for a number of
years that some β-blockers with “intrinsic sympathomimetic activity”
(ISA) due to weak partial agonist activity mediated through G protein
stimulation did not share this salutary effect5,6. Yet, a recent paper by
Benkel et al. 7, “How carvedilol activates β2-adrenoceptors”, using
engineered cells that lack either G proteins or arrestins, proposes that
carvedilol, a widely used and effective β-blocker for heart failure, sig-
nals through β2AR-mediated G protein activation. Here, we explain
why we believe the conclusions put forward by Benkel et al. are
incorrect and certainly cannot be extended to clinical implications and
should not guide decisions in the clinic.

Contrary to the claims of Benkel et al.7, it has previously been
established that in systolic heart failure (currently known as Heart
Failure with reduced Ejection Fraction, HFrEF), β-blockers without ISA
have beneficial effects whereas those with ISA do not5,6. None of the
three FDA-approved β-blockers for the treatment of heart failure
(carvedilol, metoprolol and bisoprolol) and nebivolol (approved in
Europe) are classified as having ISA8. This is in concertwith clinical trial
evidence that drugs such as milrinone and ibopamine, which enhance
cyclic AMP (as is the case for β-blockers with ISA), have deleterious
effects in systolic heart failure9,10. Benkel et al. cite onepost-myocardial
infarction trial11 of a β-blocker with ISA. Yet when considering the 25
postmyocardial infarctionβ-blocker trials carried out in the 1970’s and
1980’s, those with ISA showed substantially less beneficial, or even
negative effects on patient outcomes12.

It has been established that cells such as those used inmost of the
studies in Benkel et al., which have been transfected with robust
expression vectors consisting of cDNAs encoding GPCRs (in this case
the β2 adrenoceptor, β2AR), express receptors at levels that are

generally at least 10- to 100-fold higher than the levels of endogenous
expression13. Benkel et al. do not directly report the level of receptor
expression in their cells. It can be readily demonstrated that in
untransfected HEK-293 cells, which express low (physiologic) levels of
endogenous β2ARs, carvedilol does not stimulate an elevation in the
levels of cyclic AMP14, and this is true even in some systems with high
level overexpression of β2ARs

15. Not until receptor levels are dramati-
cally raised by overexpression, and at high concentrations of carve-
dilol, is very low-level stimulation observed. Indeed, the authors
themselves point out “…that the majority of assays to disentangle
G-protein versus Arrestin biased signaling were performed in over-
expression systems. Hence extrapolation of our data to primary cells
or the in vivo situation must be performed with caution…”. The con-
centrations of carvedilol used in Benkel’s overexpressing cells, 10
micromolar for many studies and above one micromolar in most, are
well above the plasma levels the drug ever achieves clinically. For
example, maximal plasma levels of carvedilol after a typical 50mg
dose in humans are well below 100 nM, of which 95 to 98% is protein
bound, meaning the effective therapeutic concentration is, in fact, an
order of magnitude lower16,17.

Our review of the literature finds at least 9 papers in which more
physiological cardiovascular systems were used to test whether car-
vedilol possesses ISA18–26. These studies used awide array of in vivo and
ex vivo cardiac preparations ranging from in vivo pithed rats24,25 to
isolated myocytes21,24,26 to isolated atrial and ventricular myocardial
preparations18–20,22,23, from multiple species including guinea pig26,
mouse21, rat18,24,25, and human failing and non-failing
myocardium18–20,22,23. In no case was any stimulatory effect seen with
carvedilol at the level of cyclic AMP18,19,24,26, isolated muscle force
generation19,20,22,23, contractility21 or beating rate24,25. None of these
studieswere cited in Benkel et al.7, and all failed to show that carvedilol
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demonstrates ISA in cardiac preparations with endogenous levels of
adrenergic receptor expression. These results are in conflict with the
findings reported by Benkel et al. in the set of experiments in which
isolated neonatalmouse cardiacmyocytes are utilized (Fig. 3 in Benkel
et al.). Additionally, in our view, several of the papers that are refer-
enced in support of carvedilol possessing ISA are cited misleadingly.
For example, Benkel et al. cite reference 24 as stating that carvedilol
binding is sensitive to GTP27. While it is true that theMaack et al. paper
claimed that carvedilol has ISA, in fact, their data showed that carve-
dilol has no ISA in 6 out of 7 experiments performed27. Other such
papers cited either explicitly state that “carvedilol has no intrinsic
sympathomimetic activity“28, make no statements about ISA29, or use
non physiologic overexpression systems30–32.

Furthermore, the finding that the full agonist isoproterenol and
the β-blocker carvedilol through the β2AR have quite similar (70%)
effect on enhancing heart cell beating rate is inconsistent with fun-
damental pharmacological principles for the action of a full agonist
and a competitive antagonist on receptor activation (Benkel et al., Fig.
3f: + CGP-20712A, 3rd column ~22 bpm, vs. Fig. 3h: + CGP-20712A, 2nd
column ~15 bpm). Moreover, the data in Fig. 3 with myocardial cells
that indicate the chronotropic effects of isoproterenol and carvedilol
are being driven primarily by the β2AR is inconsistent with previous
studies with β1 and β2AR knockout mice, both in neonatal cardiac
myocytes33 and in the intact heart34,35 (none cited). These previous
studies clearly indicate that such responses to β-agonists are driven
either primarily or exclusively by the β1AR. Patients who begin taking
carvedilol do not develop a tachycardia, and indeed, lowering heart
rate in heart failure can be beneficial36.

Several laboratories have documented that carvedilol is a weak β-
arrestin biased ligand that can stimulate ERK activity in a β-arrestin
and/or GRK dependent fashion although most demonstrations have
been in the same type of overexpression, high drug concentration
systems used here14,21,37–40. This understanding of the actions of car-
vedilol still casts it as a very useful tool for biophysical studies probing
the molecular mechanisms of biased signaling. This is evidenced by
several studies which demonstrate that the drug stabilizes unique
partially active conformations of the β2AR

41,42 with characteristics in
commonwith β-arrestin biased conformations of other GPCRs such as
the angiotensin receptor featuring repositioning of transmembrane
helix 7 and the short nonmembrane embedded helix 843. Nonetheless,
in Fig. 1 Benkel et al. report that they failed to observe any alteration in
carvedilol-stimulated ERK activation in comparing the response
between one particular β-arrestin 1/2 double CRISPR knockout HEK-
293 cell line and its cognate parental HEK-293 cell line. The authors
have published this particular finding before44. However, it has been
demonstrated by others that independent derivation of such CRISPR
β-arrestin knockout lines in two other laboratories leads to cells with
very different properties than the ones utilized here37 (not cited in this
context). For example, in the two distinct parental HEK-293 cells used
for derivation of the other two CRISPR knockout lines, transfection
with β-arrestin1/2 siRNA led to near elimination of carvedilol-
stimulated ERK activation. Moreover, in CRISPR β-arrestin knockout
lines derived from these parental cells, no carvedilol stimulation of
ERK activity could be demonstrated but could be restored by rein-
troduction of β-arrestin 1/2 by transfection37. These results could not
be replicated with the parental and knockout HEK-293 cells used by
Benkel et al. These striking differences in β-arrestin signaling amongst
the three independently derived CRISPR β-arrestin knockout lines and
the parental HEK-293 clones from which they were derived are pre-
sumably due to differential “rewiring of the cells” during their deriva-
tion and underscore a shortcoming in the Benkel et al. study. Highly
engineered systems call for orthogonal approaches to validate the
findings, for example using more than one of the published clonal β-
arrestin knockout lines and use of siRNA to knock down β-arrestin
expression. In fact, in contrastwith these variable results obtainedwith

the different CRISPR lines, siRNA mediated reductions in β-arrestin
levels in all three parentalHEK-293 lines led to consistent reductions in
ERK activation not only through the β2AR and β1AR, but also through
the AVP and FSH receptors as well37.

In summary, over 30 years of clinical studies support the fact
thatβ-blockerswithout ISAhave beneficial effects, and thosewith ISA
have no benefit or increased mortality in systolic heart failure. The
proposal of Benkel et al. that the mechanism responsible for the
beneficial actions of carvedilol is ISA is not consistent with the
overwhelming evidence that rests securely on decades of basic sci-
ence studies and numerous clinical trials, and should not guide
clinical practice.
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