113 research outputs found

    The PstI/RsaI and DraI polymorphisms of CYP2E1 and head and neck cancer risk: a meta-analysis based on 21 case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>CYP2E1 </it>encodes a member of the cytochrome P450 superfamily of enzymes which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of cancer. The PstI/RsaI and DraI polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of head and neck cancer, but the results are conflicting.</p> <p>Methods</p> <p>We performed a meta-analysis using 21 eligible case-control studies with a total of 4,951 patients and 6,071 controls to summarize the data on the association between the <it>CYP2E1 </it>PstI/RsaI and DraI polymorphism and head and neck cancer risk, especially by interacting with smoking or alcohol.</p> <p>Results</p> <p>Compared with the wild genotype, the OR was 1.96 (95% CI: 1.33-2.90) for PstI/RsaI and 1.56 (95% CI: 1.06-2.27) for DraI polymorphism respectively. When stratified according to ethnicity, the OR increased in the Asians for both polymorphisms (OR = 2.04, 95% CI: 1.32-3.15 for PstI/RsaI; OR = 2.04, 95% CI: 1.27-3.29 for DraI), suggesting that the risk is more pronounced in Asians.</p> <p>Conclusion</p> <p>Our meta-analysis suggests that individuals with the homozygote genotypes of PstI/RsaI or DraI polymorphism might be associated with an increased risk of head and neck cancer, especially in Asians.</p

    Genetic Association of Olanzapine Treatment Response in Han Chinese Schizophrenia Patients

    Get PDF
    Olanzapine, a second-generation antipsychotic medication, plays a critical role in current treatment of schizophrenia (SCZ). It has been observed that the olanzapine responses in schizophrenia treatment are different across individuals. However, prediction of this individual-specific olanzapine response requires in-depth knowledge of biomarkers of drug response. Here, we performed an integrative investigation on 238 Han Chinese SCZ patients to identify predictive biomarkers that were associated with the efficacy of olanzapine treatment. This study applied HaloPlex technology to sequence 143 genes from 79 Han Chinese SCZ patients. Our result suggested that there were 12 single nucleotide polymorphisms (SNPs) had significant association with olanzapine response in Han Chinese SCZ patients. Using MassARRAY platform, we tested that if these 12 SNPs were also statistically significant in 159 other SCZ patients (independent cohort) and the combined 238 SCZ patients (composed of two tested cohorts). The result of this analysis showed that 2 SNPs were significantly associated with the olanzapine response in both independent cohorts (rs324026, P = 0.023; rs12610827, P = 0.043) and combined SCZ patient population (rs324026, adjust P = 0.014; rs12610827, adjust P = 0.012). Our study provides systematic analyses of genetic variants associated with olanzapine responses of Han Chinese SCZ patients. The discovery of these novel biomarkers of olanzapine-response will facilitate to advance future olanzapine treatment specific for Han Chinese SCZ patients

    Evolutionary trajectory of the replication mode of bacterial replicons

    Get PDF
    As typical bacterial replicons, circular chromosomes replicate bidirectionally and circular plasmids replicate either bidirectionally or unidirectionally. Whereas the finding of chromids (plasmid-derived chromosomes) in multiple bacterial lineages provides circumstantial evidence that chromosomes likely evolved from plasmids, all experimentally assayed chromids were shown to use bidirectional replication. Here, we employed a model system, the marine bacterial genus Pseudoalteromonas, members of which consistently carry a chromosome and a chromid. We provide experimental and bioinformatic evidence that while chromids in a few strains replicate bidirectionally, most replicate unidirectionally. This is the first experimental demonstration of the unidirectional replication mode in bacterial chromids. Phylogenomic and comparative genomic analyses showed that the bidirectional replication evolved only once from a unidirectional ancestor and that this transition was associated with insertions of exogenous DNA and relocation of the replication terminus region (ter2) from near the origin site (ori2) to a position roughly opposite it. This process enables a plasmid-derived chromosome to increase its size and expand the bacterium’s metabolic versatility while keeping its replication synchronized with that of the main chromosome. A major implication of our study is that the uni- and bidirectionally replicating chromids may represent two stages on the evolutionary trajectory from unidirectionally replicating plasmids to bidirectionally replicating chromosomes in bacteria. Further bioinformatic analyses predicted unidirectionally replicating chromids in several unrelated bacterial phyla, suggesting that evolution from unidirectionally to bidirectionally replicating replicons occurred multiple times in bacteria

    A Missense Variant in PTPN22 is a Risk Factor for Drug-induced Liver Injury

    Get PDF
    Background & Aims We performed genetic analyses of a multiethnic cohort of patients with idiosyncratic drug-induced liver injury (DILI) to identify variants associated with susceptibility. Methods We performed a genome-wide association study of 2048 individuals with DILI (cases) and 12,429 individuals without (controls). Our analysis included subjects of European (1806 cases and 10,397 controls), African American (133 cases and 1,314 controls), and Hispanic (109 cases and 718 controls) ancestry. We analyzed DNA from 113 Icelandic cases and 239,304 controls to validate our findings. Results We associated idiosyncratic DILI with rs2476601, a nonsynonymous polymorphism that encodes a substitution of tryptophan with arginine in the protein tyrosine phosphatase, nonreceptor type 22 gene (PTPN22) (odds ratio [OR] 1.44; 95% confidence interval [CI] 1.28–1.62; P = 1.2 Γ— 10–9 and replicated the finding in the validation set (OR 1.48; 95% CI 1.09–1.99; P = .01). The minor allele frequency showed the same effect size (OR > 1) among ethnic groups. The strongest association was with amoxicillin and clavulanate-associated DILI in persons of European ancestry (OR 1.62; 95% CI 1.32–1.98; P = 4.0 Γ— 10–6; allele frequency = 13.3%), but the polymorphism was associated with DILI of other causes (OR 1.37; 95% CI 1.21–1.56; P = 1.5 Γ— 10–6; allele frequency = 11.5%). Among amoxicillin- and clavulanate-associated cases of European ancestry, rs2476601 doubled the risk for DILI among those with the HLA risk alleles A*02:01 and DRB1*15:01. Conclusions In a genome-wide association study, we identified rs2476601 in PTPN22 as a non-HLA variant that associates with risk of liver injury caused by multiple drugs and validated our finding in a separate cohort. This variant has been associated with increased risk of autoimmune diseases, providing support for the concept that alterations in immune regulation contribute to idiosyncratic DILI

    Two Homologous Putative Protein Tyrosine Phosphatases, OsPFA-DSP2 and AtPFA-DSP4, Negatively Regulate the Pathogen Response in Transgenic Plants

    Get PDF
    Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H2O2) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H2O2 and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants

    Association of Liver Injury From Specific Drugs, or Groups ofΒ Drugs, With Polymorphisms in HLA and Other Genes in aΒ Genome-Wide Association Study

    Get PDF
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (nΒ = 137) and the United States (nΒ = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9-3.8; PΒ = 2.4Β Γ— 10-8) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6-2.5; PΒ = 9.7Β Γ— 10-9). The association with A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A*33:01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6-2.7; PΒ = 4.8Β Γ— 10-9). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0-9.5; PΒ = 7.1Β Γ— 10-9). We validated the association between A*33:01 terbinafine- and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors

    Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study

    Get PDF
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for druginduced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A* 33: 01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9 - 3.8; P = 2.4 x 10(-8)) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6 - 2.5; P = 9.7 x 10(-9)). The association with A* 33: 01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A* 33: 01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6 - 2.7; P = 4.8 x 10(-9)). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0 - 9.5; P = 7.1 x 10(-9)). We validated the association between A* 33: 01 terbinafine-and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A* 33: 01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.Peer reviewe

    Genetic Polymorphisms in CYP2E1: Association with Schizophrenia Susceptibility and Risperidone Response in the Chinese Han Population

    Get PDF
    CYP2E1 is a member of the cytochrome P450 superfamily, which is involved in the metabolism and activation of both endobiotics and xenobiotics. The genetic polymorphisms of CYP2E1 gene (Chromosome 10q26.3, Accession Number NC_000010.10) are reported to be related to the development of several mental diseases and to be involved in the clinical efficacy of some psychiatric medications. We investigated the possible association of CYP2E1 polymorphisms with susceptibility to schizophrenia in the Chinese Han Population as well as the relationship with response to risperidone in schizophrenia patients.In a case-control study, we identified 11 polymorphisms in the 5' flanking region of CYP2E1 in 228 schizophrenia patients and 384 healthy controls of Chinese Han origin. From among the cases, we chose 130 patients who had undergone 8 weeks of risperidone monotherapy to examine the relationship between their response to risperidone and CYP2E1 polymorphisms. Clinical efficacy was assessed using the Brief Psychiatric Rating Scale (BPRS).Statistically significant differences in allele or genotype frequencies were found between cases and controls at rs8192766 (genotype pβ€Š=β€Š0.0048, permutation pβ€Š=β€Š0.0483) and rs2070673 (allele: pβ€Š=β€Š0.0018, permutation pβ€Š=β€Š0.0199, ORβ€Š=β€Š1.4528 95%CIβ€Š=β€Š1.1487-1.8374; genotype: pβ€Š=β€Š0.0020, permutation pβ€Š=β€Š0.0225). In addition, a GTCAC haplotype containing 5 SNPs (rs3813867, rs2031920, rs2031921, rs3813870 and rs2031922) was observed to be significantly associated with schizophrenia (pβ€Š=β€Š7.47E-12, permutation p<0.0001). However, no association was found between CYP2E1 polymorphisms/haplotypes and risperidone response.Our results suggest that CYP2E1 may be a potential risk gene for schizophrenia in the Chinese Han population. However, polymorphisms of the CYP2E1 gene may not contribute significantly to individual differences in the therapeutic efficacy of risperidone. Further studies in larger groups are warranted to confirm our results

    Exploring Off-Targets and Off-Systems for Adverse Drug Reactions via Chemical-Protein Interactome β€” Clozapine-Induced Agranulocytosis as a Case Study

    Get PDF
    In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs
    • …
    corecore