191 research outputs found

    Homes became the “everything space” during COVID-19: impact of changes to the home environment on children’s physical activity and sitting

    Get PDF
    BackgroundDuring the 2020 UK COVID-19 lockdown restrictions, children spent almost all of their time at home, which had a significant influence on their physical activity (PA) and sedentary behaviour. This study aimed to: 1) determine changes to the social and physical environment at home and children’s home-based sitting, PA, standing and sitting breaks as a result of the COVID-19 restrictions; and 2) examine associations between changes at home and children’s movement behaviours.MethodsOne hundred and two children had their PA and sitting, standing and sitting breaks at home objectively measured pre-COVID-19 and during the first COVID-19 lockdown (June-July 2020). Children’s parents (n = 101) completed an audit of their home physical environment and a survey on the home social environment at both time points. Changes in the home physical and social environment and behavioural outcomes were assessed using Wilcoxon signed ranked tests, paired t-tests, or chi-square. Repeated linear regression analyses examined associations between changes in homes and changes in the home-based behavioural outcomes.ResultsDuring COVID-19, households increased the amount of seated furniture and electronic media equipment at home. The number of books and PA equipment decreased and fewer parents enforced a screen-time rule. Children’s preference for physical activities and socialising at home decreased. Time at home and sitting at home increased during COVID-19, whilst PA, standing and sitting breaks decreased. Both MVPA and TPA were positively associated with child preference for PA, and negatively associated with attending school. Sitting was negatively associated with child preference for PA and child preference for socialising at home. Media equipment was negatively associated with sitting breaks, whilst PA equipment was positively associated with standing.ConclusionThe COVID-19 restrictions forced children to spend almost all their time at home. Children’s PA, standing, and sitting breaks at home declined during the restrictions, while sitting increased. Mostly negative changes occurred in homes, some of which impacted children’s behaviours at home. To avoid the changes persisting post-lockdown, interventions are needed to reset and promote children’s PA and discourage prolonged sitting time

    Synthesis and crystal structures of 5'-phenylspiro[indoline-3, 2'-pyrrolidin]-2-one derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The spiro- indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids. The derivatives of spirooxindole ring systems are used as antimicrobial, antitumour agents and as inhibitors of the human NKI receptor besides being found in a number of alkaloids like horsifiline, spirotryprostatin and (+) elacomine. The recently discovered small-molecule MDM2 inhibitor MI-219 and its analogues are in advanced preclinical development as cancer therapeutics.</p> <p>Results</p> <p>In the crystal structures of the two organic compounds, 4'-Nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-Methoxyphenyl)- 4'-nitro -5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one, N-H···O hydrogen bonds make the R<sup>2</sup><sub>2 </sub>(8) ring motif. Further, the structures are stabilized by intermolecular hydrogen bonds.</p> <p>Conclusion</p> <p>The crystal structures of 4'-Nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-Methoxyphenyl)- 4'-nitro -5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one have been investigated in detail. In both the compounds, the R<sup>2</sup><sub>2</sub>(8) motif is present. Due to the substitution of methoxyphenyl instead of phenyl ring, the entire configuration is inverted with respect to the 2-oxyindole ring.</p

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of ÎČ-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible ÎČ-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone NΔ-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells

    Get PDF
    Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20–45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO3–, NO2–, HNO, ONOO–, NO2, OCl–, and H2O2. The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages.National Science Foundation (U.S.) (CHE-0611944)National Institutes of Health (U.S.) (K99GM092970

    Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis

    No full text
    The neutral Rh­(I)–Xantphos complex [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­Cl]<sub><i>n</i></sub>, <b>4</b>, and cationic Rh­(III) [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(H)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], <b>2a</b>, and [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)­(H)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], <b>2b</b>, are described [Ar<sup>F</sup> = 3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; Xantphos = 4,5-bis­(diphenylphosphino)-9,9-dimethylxanthene; Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub> = 9,9-dimethylxanthene-4,5-bis­(bis­(3,5-bis­(trifluoromethyl)­phenyl)­phosphine]. A solid-state structure of <b>2b</b> isolated from C<sub>6</sub>H<sub>5</sub>Cl solution shows a Îș<sup>1</sup>-chlorobenzene adduct, [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)­(H)<sub>2</sub>(Îș<sup>1</sup>-ClC<sub>6</sub>H<sub>5</sub>)]­[BAr<sup>F</sup><sub>4</sub>], <b>3</b>. Addition of H<sub>2</sub> to <b>4</b> affords, crystallographically characterized, [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(H)<sub>2</sub>Cl], <b>5</b>. Addition of diphenyl acetylene to <b>2a</b> results in the formation of the C–H activated metallacyclopentadiene [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(ClCH<sub>2</sub>Cl)­(σ,σ-(C<sub>6</sub>H<sub>4</sub>)­C­(H)CPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>7</b>, a rare example of a crystallographically characterized Rh–dichloromethane complex, alongside the Rh­(I) complex <i>mer</i>-[Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(η<sup>2</sup>-PhCCPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>6</b>. Halide abstraction from [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­Cl]<sub><i>n</i></sub> in the presence of diphenylacetylene affords <b>6</b> as the only product, which in the solid state shows that the alkyne binds perpendicular to the Îș<sup>3</sup>-POP Xantphos ligand plane. This complex acts as a latent source of the [Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)]<sup>+</sup> fragment and facilitates <i>ortho</i>-directed C–S activation in a number of 2-arylsulfides to give <i>mer</i>-[Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(σ,Îș<sup>1</sup>-Ar)­(SMe)]­[BAr<sup>F</sup><sub>4</sub>] (Ar = C<sub>6</sub>H<sub>4</sub>COMe, <b>8</b>; C<sub>6</sub>H<sub>4</sub>(CO)­OMe, <b>9</b>; C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, <b>10</b>; C<sub>6</sub>H<sub>4</sub>CNCH<sub>2</sub>CH<sub>2</sub>O, <b>11</b>; C<sub>6</sub>H<sub>4</sub>C<sub>5</sub>H<sub>4</sub>N, <b>12</b>). Similar C–S bond cleavage is observed with allyl sulfide, to give <i>fac</i>-[Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­(SPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>13</b>. These products of C–S activation have been crystallographically characterized. For <b>8</b> in situ monitoring of the reaction by NMR spectroscopy reveals the initial formation of <i>fac</i>-Îș<sup>3</sup>-<b>8</b>, which then proceeds to isomerize to the <i>mer</i>-isomer. With the <i>para</i>-ketone aryl sulfide, 4-SMeC <sub>6</sub>H<sub>4</sub>COMe, C–H activation <i>ortho</i> to the ketone occurs to give <i>mer</i>-[Rh­(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(σ,Îș<sup>1</sup>-4-(COMe)­C<sub>6</sub>H<sub>3</sub>SMe)­(H)]­[BAr<sup>F</sup><sub>4</sub>], <b>14</b>. The temporal evolution of carbothiolation catalysis using <i>mer</i>-Îș<sup>3</sup>-<b>8</b>, and phenyl acetylene and 2-(methylthio)­acetophenone substrates shows initial fast catalysis and then a considerably slower evolution of the product. We suggest that the initially formed <i>fac</i>-isomer of the C–S activation product is considerably more active than the <i>mer</i>-isomer (i.e., <i>mer</i>-<b>8</b>), the latter of which is formed rapidly by isomerization, and this accounts for the observed difference in rates. A likely mechanism is proposed based upon these data

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape

    Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology

    Get PDF
    Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. © 2013 Mohan et al
    • 

    corecore