175 research outputs found

    Comparison of constitutive relationships based on kinetic theory of granular gas for three dimensional vibrofluidized beds

    Get PDF
    Granular materials exist in many forms in nature ranging from space debris to sand dunes and from breakfast cereals to pharmaceutical tablets. They can behave like a solid or a viscous fluid or a gas. The gas-like nature of granular materials in rapid flows allows the use of models based on kinetic theory thus revealing in depth complex physics and phenomena. However unlike conventional fluids here the energy balance requires additional dissipation terms as a consequence of inelasticity. The complexity of their interaction and diversity in application has led to numerous studies using experimental methods and numerical simulations in order to determine the most appropriate constitutive relationships for granular gases. With large dissipation the form of the constitutive relationship becomes particularly important, especially in the presence of non-equipartition and anisotropy. This thesis is focused on constitutive models of simple granular flows. A vibrated bed is often used as an idealisation of granular flows, providing a convenient approximation to the simplest type of flow: binary and instantaneous collisions with no rotations. Using finite element method (FE) based COMSOL modules we solve conservation of mass, momentum and energy resulting from granular kinetic theory in axi-symmetric form to generate time and spatial resolved solutions of packing fraction, velocity and granular temperature and compare the predictions to numerical simulation and experiment. At first we show the comparison for two closure sets, one based on a simple near elastic approach while the second based on revised Enskog theory for dense inelastic flows. The results for the second approach show good agreement with the results of previously validated near elastic models and experimental results. The observed differences between the two closure sets are small except for the observation of temperature upturn in a dilute region of the cell away from base. One cause of this is the presence of additional constitutive terms in the balance equations and are a consequence of inelasticity. The models also consider time varying effects at low frequency of excitation. These solutions show existence of wave-like effects in the cell with associated temperature upturn within the hydrodynamic applicability region. Presence of instantaneous cyclic rolling is also seen in both approaches. Evidence from MD simulations and experiments qualitatively support the findings of hydrodynamic models in phase resolved as well as time average behaviour. Subsequently, the frequency of vibration was varied to unlink the wave motion from the bulk temperature. Lack of agreement between experiment and the model predictions are shown to be due to lack of separation of time scale between the grain-base interaction and the base frequency. A sharp decrease of heat flux is measured showing that the energy input is frequency dependent. Analysis of the bulk behaviour shows that at high frequency, hard sphere based models are able to capture the steady state behaviour reasonably well. Further investigations that modulate the driving with a low frequency amplitude change revealed the dynamic nature of flow with the low frequency component. No significant influence of high frequency signal is noted except the reduction of base heat flux. Independent analysis of bulk behaviour for modulated wave excitation using MD simulations and hydrodynamic models showed wave motion in a pattern similar to non-modulated low frequency vibration. A one-dimensional inviscid model was used to determine the underlying scaling relationships for near elastic granular flows. A form of non-dimensionalisation predicts scaling behaviour for the granular flow. The predictions show good results for the dilute flows using hard sphere MD simulations. Results from MD simulations confirm dilute limit scaling of base temperature, packing fractions and heat flux coefficients. At higher inelasticity and loading condition the model fails to capture the real physics suggesting the need for a more accurate model. This simplified model does, however, set the basis for describing the main scalings for vibrofluidized granular beds, and in the future we anticipate that effects of further inelasticity and enhanced density could be incorporated

    Numerical study of a regenerative counter flow evaporative cooler using alumina nanoparticles in wet channel

    Get PDF
    The use of Maisotsenko Cycle (M-Cycle) has enhanced the domain of evaporative cooling technologies to sub-wet bulb temperature cooling while ensuring moisture control. Several studies have demonstrated the use of cross-flow heat & mass exchanger (HMX) offers higher cooling capacity; however, it has lower cooling effectiveness and Energy Efficiency Ratio (EER). In contrast, a counter-flow (HMX) offers high cooling effectiveness with lower cooling capacity. In this paper, the performance of counter-flow HMX is enhanced by addition of alumina nanoparticles in feed water due to enhanced heat and mass transfer characteristics of nanofluids compared to original base fluid. Here, a mathematical model is formulated by incorporating the nanofluids in a selected control volume. The developed model is solved numerically on a discretized HMX length. Initially, the model is benchmarked against previously published results using water as base fluid. A comparison between HMX performance using water and alumina nanofluid is performed in terms of Performance Enhancement Ratio (PER). PER indicates 1-18% increase in cooling effectiveness, 18-43% increase in cooling capacity and 9-19% increase in EER by using alumina in water when working air temperature is increased from 20°C to 45°C. Similarly, an increase in PER is also observed by changing air velocity. Increase of 41% is observed in cooling capacity and 18% increase in EER is observed by changing particle volume fraction from 0 to 2 percent. This research identifies ways to reduce the carbon emissions of a building by increasing the energy efficiency of existing evaporative cooling technology using nanofluids

    Antepartum transabdominal amnioinfusion in oligohydramnios - a comparative study

    Get PDF
    Background: The purpose of this study was to evaluate the role of antepartum transabdominal amnioinfusion in oligohydramnios with the view to improving pregnancy outcome in oligohydramnios, a serious complication of pregnancy that is associated with a poor perinatal outcome and complicates 1-5% of pregnancies.Methods: The study comprised of a prospective analysis of 130 pregnant women with oligohydramnios, divided into two groups, the study and control group of 65 patients each and were similar with regard to age, gravidity, parity, gestational age. TAA was performed on all patients in the study group and the results were compared and analyzed.Results: Mean gestational age at first treatment was 29.98 weeks in study group. Mean pre-procedure amniotic fluid index was 4.01 and post-procedure was 12.49. A total of 106 infusions were done on 65 patients (mean1.63). Mean latency period in study group was 49.53 and in controls 26.49. There was significant decrease in fetal distress in patients in study group. 30 % of patients needed caesarean section in study group compared to 60% in controls. Number of preterm deliveries was 18 and 45 respectively in study and control groups. 61% of newborns in the study group weighed more than 2.5 kg compared to only 24% in control group. Neonatal ICU admissions and newborn deaths were lesser in study group.Conclusions: Transabdominal amnioinfusion is an extremely useful procedure to reduce complications arising from oligohyramnios. It significantly increases the latency period, decreases the occurrence of fetal distress preterm deliveries, need for caesarean or instrumental deliveries, improves birth weight of the newborns and significantly reduces the neonatal morbidity and mortality

    Videos of sipuleucel-T programmed T cells lysing cells that express prostate cancer target antigens

    Get PDF
    Sipuleucel-T, an autologous cellular immunotherapy, was approved to treat metastatic castration-resistant prostate cancer in 2010 in the United States. Treatment with sipuleucel-T primes the immune system to target prostate acid phosphatase, which is expressed by prostate cancer cells, potentially leading to lysis of cancer cells. Expanding on previously reported indirect evidence of cell killing with sipuleucel-T treatment, we sought to provide direct evidence of cell lysis through visualization. We used advanced video technology and available samples of peripheral blood mononuclear cells from subjects enrolled in the STAMP trial (NCT01487863). Isolated CD8+ T cells were used as effector cells and cocultured with autologous monocytes pulsed with control or target antigens. Differentially stained effector and target cells were then video recorded during coculture. Here, we present video recordings and analyses of T cells from sipuleucel-T-treated subjects showing-for the first time-direct lysis of cells that express prostate cancer target antigens, prostate acid phosphatase, or prostate-specific antigen

    Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer.

    Get PDF
    BackgroundSipuleucel-T is a US Food and Drug Administration-approved immunotherapy for asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Its mechanism of action is not fully understood. This prospective trial evaluated the direct immune effects of systemically administered sipuleucel-T on prostatic cancer tissue in the preoperative setting.MethodsPatients with untreated localized prostate cancer were treated on an open-label Phase II study of sipuleucel-T prior to planned radical prostatectomy (RP). Immune infiltrates in RP specimens (posttreatment) and in paired pretreatment biopsies were evaluated by immunohistochemistry (IHC). Correlations between circulating immune response and IHC were assessed using Spearman rank order.ResultsOf the 42 enrolled patients, 37 were evaluable. Adverse events were primarily transient, mild-to-moderate and infusion related. Patients developed T cell proliferation and interferon-γ responses detectable in the blood following treatment. Furthermore, a greater-than-three-fold increase in infiltrating CD3(+), CD4(+) FOXP3(-), and CD8(+) T cells was observed in the RP tissues compared with the pretreatment biopsy (binomial proportions: all P < .001). This level of T cell infiltration was observed at the tumor interface, and was not seen in a control group consisting of 12 concurrent patients who did not receive any neoadjuvant treatment prior to RP. The majority of infiltrating T cells were PD-1(+) and Ki-67(+), consistent with activated T cells. Importantly, the magnitude of the circulating immune response did not directly correlate with T cell infiltration within the prostate based upon Spearman's rank order correlation.ConclusionsThis study is the first to demonstrate a local immune effect from the administration of sipuleucel-T. Neoadjuvant sipuleucel-T elicits both a systemic antigen-specific T cell response and the recruitment of activated effector T cells into the prostate tumor microenvironment

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    • …
    corecore