
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



 

iii 
 

 

 

 

 

Comparison of Constitutive Relationships based on 

Kinetic Theory of Granular Gas for Three 

Dimensional Vibrofluidized Beds 

 

 

 

 

 

By 

 

Nadeem Ahmed Sheikh 

 

 

 

A Doctoral Thesis submitted in partial fulfilment of the 

requirements for the award of Doctor of Philosophy of 

Loughborough University 

 

2011 



 

iv 
 

 

 

 

 

 

 

 

 

 

 

Dedicated to my dear parents and family 

members  



 

v 
 

Abstract 

Granular materials exist in many forms in nature ranging from space debris to sand dunes 

and from breakfast cereals to pharmaceutical tablets. They can behave like a solid or a 

viscous fluid or a gas. The gas-like nature of granular materials in rapid flows allows the 

use of models based on kinetic theory thus revealing in depth complex physics and 

phenomena. However unlike conventional fluids here the energy balance requires 

additional dissipation terms as a consequence of inelasticity. The complexity of their 

interaction and diversity in application has led to numerous studies using experimental 

methods and numerical simulations in order to determine the most appropriate constitutive 

relationships for granular gases. With large dissipation the form of the constitutive 

relationship becomes particularly important, especially in the presence of non-equipartition 

and anisotropy. This thesis is focused on constitutive models of simple granular flows. A 

vibrated bed is often used as an idealisation of granular flows, providing a convenient 

approximation to the simplest type of flow: binary and instantaneous collisions with no 

rotations. Using finite element method (FE) based COMSOL modules we solve 

conservation of mass, momentum and energy resulting from granular kinetic theory in axi-

symmetric form to generate time and spatial resolved solutions of packing fraction, 

velocity and granular temperature and compare the predictions to numerical simulation and 

experiment. 

At first we show the comparison for two closure sets, one based on a simple near elastic 

approach while the second based on revised Enskog theory for dense inelastic flows. The 

results for the second approach show good agreement with the results of previously 

validated near elastic models and experimental results. The observed differences between 

the two closure sets are small except for the observation of temperature upturn in a dilute 

region of the cell away from base. One cause of this is the presence of additional 

constitutive terms in the balance equations and are a consequence of inelasticity.  

The models also consider time varying effects at low frequency of excitation. These 

solutions show existence of wave-like effects in the cell with associated temperature upturn 

within the hydrodynamic applicability region. Presence of instantaneous cyclic rolling is 

also seen in both approaches. Evidence from MD simulations and experiments 

qualitatively support the findings of hydrodynamic models in phase resolved as well as 

time average behaviour.  
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Subsequently, the frequency of vibration was varied to unlink the wave motion from the 

bulk temperature. Lack of agreement between experiment and the model predictions are 

shown to be due to lack of separation of time scale between the grain-base interaction and 

the base frequency. A sharp decrease of heat flux is measured showing that the energy 

input is frequency dependent. Analysis of the bulk behaviour shows that at high frequency, 

hard sphere based models are able to capture the steady state behaviour reasonably well. 

Further investigations that modulate the driving with a low frequency amplitude change 

revealed the dynamic nature of flow with the low frequency component. No significant 

influence of high frequency signal is noted except the reduction of base heat flux. 

Independent analysis of bulk behaviour for modulated wave excitation using MD 

simulations and hydrodynamic models showed wave motion in a pattern similar to non-

modulated low frequency vibration.  

A one-dimensional inviscid model was used to determine the underlying scaling 

relationships for near elastic granular flows. A form of non-dimensionalisation predicts 

scaling behaviour for the granular flow. The predictions show good results for the dilute 

flows using hard sphere MD simulations. Results from MD simulations confirm dilute 

limit scaling of base temperature, packing fractions and heat flux coefficients. At higher 

inelasticity and loading condition the model fails to capture the real physics suggesting the 

need for a more accurate model. This simplified model does, however, set the basis for 

describing the main scalings for vibrofluidized granular beds, and in the future we 

anticipate that effects of further inelasticity and enhanced density could be incorporated.   

Keywords: Kinetic theory model, vibrofluidized bed, finite element methods, constitutive 

relationships, revised Enskog theory, MD simulations. 
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) 

  First order dissipation rate 

  dimensionless coefficient 

  (kgm
-1

s
-2

) 

   Dimensionless kinetic 

  component of thermal 

  conductivity 

   Collision frequency due to 

  kinetic transport (1/s) 

   Dimensionless Kinetic  

  inelastic collisional  

  contribution to heat flux 

  Base frequency (rad/s) 

Ω  Angular velocity (1/s) 

   Elastic limit of shear  

  viscosity (kgm
-1

s
-1

) 

  Dissipation (m
-1

s
-3

)  

  Cooling rate (s
-1

)  

  Reduced coefficient for 

  Dissipation rate (kgm
-1

s
-2

) 

  Stiffness of grain (N m
-3/2

) 
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Relationship between the dimensional and dimensionless variables 

 

Dimensionless Variable Dimensional Relationship 

T
* 

T/gd 

p
* 

pπd
2
/6mg 

u
* 

u /√(gd) 

Vb
* 

Vb/√(gd) 

z
* 

z/d 

r
* 

r/d 

Ω
* 

Ω /√(g/d) 

a0* a0 / d 
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Chapter 1 Introduction to Granular Flows 

1.1 Introduction 

Granular materials are found in a wide range of applications in industry, including food, 

pharmaceutical manufacturing, agriculture and mining processes. These materials are often 

defined as a collection of large number of discrete solid particles (Duran 2000). Granular 

materials are involved in many interesting problems in the fields of civil engineering, soil 

mechanics, earthquake engineering, manufacturing engineering and physics where 

granules need to be stored, transported, and processed. These materials occur abundantly in 

nature in various forms. They are diverse in their shapes and sizes ranging from micron 

sized washing powders to few meters sized rocks forming Saturn‘s planetary rings. They 

are so common in our daily life that they sometimes go unnoticed. Food products like rice, 

corn, and breakfast cereal flakes, building materials such as sand, gravel, and soil, 

chemicals such as coal, plastics, and pharmaceuticals, and landslides of boulders and 

debris are few amongst many examples of granular materials. Relatively little is known, 

however, about their behaviour. In most processes they can be controlled reasonably well, 

but the reasons why are not always clear. Our basic understanding of granular flows is 

limited and most designs rely on empirical guidelines for their behaviour.  

1.2 Granular flows 

Granular materials exhibit a range of behaviour from elastic solids to rapid fluid-like flow 

depending on the local stress conditions (Evesque 1992). In the form when granular media 

behaves like elastic materials, it can support large loads supported through the frictional 

bonds amongst the particles (Duran 2000). When the loading overcomes the frictional 

bonding the system fails and particles begin to flow. In slowly moving dense grains the 

interaction amongst themselves is friction dominated and they move relative to one 

another. This phenomenon of deformation is referred to as the ‗quasi-static‘ regime of 

granular flows (Evesque 1992, Farkas, Tegzes et al. 1999). When forced to higher 

accelerations, the inertia of the grains dominate and interaction between them is relatively 

instantaneous compared to the mean free time. This fluidic behaviour is known as ‗rapid 

granular flows‘ (Duran 2000, Evesque 1992, Bug & Berne 1987). In all sorts of fluidic 

motion the velocity of each particle can be described as a sum of two components. One 

corresponds to the mean velocity of the bulk material and the second velocity component 

corresponds to the particle motion relative to mean bulk motion (Chapman, Cowling 1991, 
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Serero, Goldhirsch et al. 2006, Wildman, Huntley et al. 2001, Ramrez R., Soto R. 2003). 

The space between the flowing particles is generally filled with fluid like air and 

technically speaking their flow is a multiphase process. For reasonably dense systems, the 

effects of the interstitial fluid is generally small and can be ignored as the particles are the 

main contributors for transport phenomena especially when the interstitial fluid has 

relatively low density (Goldhirsch 2003).  

Although granular flows are complex and exhibit phenomena that cannot be described 

using classical ideas of fluid flows as they stand, an obvious analogy exists between 

random motion of granular particles and agitated motion of dense gases (Lun, Savage et al. 

1984, Haff 1983, Jenkins, Richman 1985b, Kumaran 2000a, Montanero, Garzo et al. 

2000). However, there are at least two important differences one cannot neglect; firstly the 

granular interaction is inelastic and secondly typical granular flows involve larger flow 

gradients than their corresponding molecular counterparts (Montanero, Garzo et al. 2000). 

Even though empirical predictions of granular flows are reasonably effective for specific 

applications, without understanding of these flows from first principles it is difficult to 

predict granular behaviour when implementing changes in design geometry and operating 

inputs. 

1.3 Motivations for studying granular flows  

The most interesting feature of the granular flows is the interacting behaviour of the grains, 

which can be diverse, ranging from collisional to frictional and/or electrostatic, leading to a 

variety of complex patterns (Alain, Emmanuel et al. 2005). Collective motion of grains is 

of particular importance in predicting natural phenomena as well as for industrial 

applications such as process design and power generation (Sunthar 2001). According to 

some estimates, granular materials contribute to $100 billion in the USA economy in 

different forms in the chemical and process industries (Duran 2000, Sunthar 2001) and a 

major part of the electrical power generation production specially through coal processing 

is linked with these materials.  

Granular flows can be hazardous in industries with hopper failure, storage tank bursts as 

well as naturally occurring phenomena such as landslides causing damage to property, 

business and mankind as well (Evesque 1992). Poor understanding of the physics of these 

materials is the main concern in devising methods to avoid such incidents. Most of the first 

hand knowledge of the particulate materials is empirical and general mathematical 
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approaches are limited to simpler systems. Over the past few decades a number of 

theoretical and experimental efforts have been made in order to comprehensively 

understand them (Lun et al. 1984, Garzo et al. 2007, Jenkins, Savage 1983). In the recent 

past computer simulations (Hrenya et al. 2008, Luding, Clement et al. 1996) as well as 

high tech experimental facilities such as high speed cameras (Wildman et al. 1999), 

nuclear magnetic resonance imaging (NMR) (Huntley et al. 2007) and positron emission 

particle tracking (PEPT) (Wildman et al. 2005) have revealed the in depth physics of these 

materials. Extensive theoretical frameworks have been proposed by theoreticians that 

broadly describe the physics in many of the observed cases. Still there are grey areas which 

are of particular importance in our complete understanding particularly when these 

materials are made to flow at high speeds. Areas such as anisotropic behaviour (Sela, 

Goldhirsch 1998), time varying behaviour (Huan et al. 2004), scaling characterization 

(Kumaran 2008), unsteady effects (Huntley et al. 2007), pattern formation (Makse et al. 

1998) and clustering (Falcon et al. 1999) are few amongst many which hinder our 

complete know how. These challenges are posed by the inherent dissipative nature of these 

flow which sometimes leads to some of the spectacular phenomenon such as ratchet effects 

(Farkas et al. 1999).  

The investigation of the exact form of constitutive relationships for energy and momentum 

transport fascinates many technologist and theoreticians (Garzo et al. 2007) but at the same 

time poses a great deal of difficulty while simulating them. Use of different hydrodynamics 

descriptions is still an open issue. Time variations, anisotropy, non-equilibrium effects, 

inelasticity, boundary conditions, constitutive relationships and mechanisms of heat 

transfer are some of the challenges while simulating them with solution methods are 

equally testing due to the non-linearity and complexities of the models (Goldshtein, 

Shapiro 2006, Goldshtein et al. 2006, Wildman et al. 2008). Theoreticians are actively 

researching for scaling behaviours and higher order effects in these flows (Hrenya et al. 

2008). A number of efforts in simulating these models have been reported but limited to 

steady state nature of monodisperse granular physics (Viswanathan et al. 2006) and often 

reduced to one dimensional (Huntley et al. 2007, Wildman et al. 2008, Martin, Huntley et 

al. 2005). There is still a bridge to be made between the theoretical framework and a real 

time tool for use in practical industrial scale granular systems. Building such a workbench 

can be useful in design and analysis for problems involving granular flow. Commercial 

design packages usually do not include granular material sections and the few who claim to 

be able to describe these systems (e.g., Fluent) are not well equipped to describe the true 
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physics. It is indeed important to develop modelling and simulation procedures for 

granular materials within the frameworks of currently available methods which can be 

accommodated in commercial packages. This research is a stepping stone to be used in an 

effort to formulate such tools. As part of this research, using currently available 

simulations methods, complex non-linear, time varying mathematical models are 

developed and solved for real time problems concerning monodisperse granular systems.  

Using hydrodynamic methods, an effort has also been made in this research work, to 

investigate some interesting phenomena in these flows. Influences of boundary condition, 

characterization of scaling trends, performance of constitutive relationships under various 

loading conditions are investigated and compared against the results using experimental 

methods and particle level descriptions. These interesting yet challenging areas are 

amongst the prime motivators for this research work.  

1.4 Understanding granular physics 

Transport is of particular importance in granular media. Many industrial processes such as 

drying, cooling, agglomeration, granulation, and coating involve transportation of mass, 

momentum and energy. Conventional methods used for fluids involve balances of these 

quantities but for granular flows there are some fundamental differences. In order to 

understand granular flows a common method is to explore a simplified system that allows 

us to deduce the key physics, including for example, shear cells, rotating drum and 

fluidized cells. A number of experimental methods such as NMR (Xiaoyu Yang, Candela 

2000) and high speed photography (Warr, Huntley et al. 1995), particle level molecular 

dynamics simulations (Ramirez, Risso et al. 2000) as well as bulk hydrodynamic models 

(Goldshtein, Kamenetsky et al. 2002, Bougie, Moon et al. 2002) have explored systems 

that use these geometries to test and analyze granular physics.  

Vibration is very helpful for fluidizing materials that have a high irregularity of shapes and 

sizes. It is especially helpful with those materials which fluidise poorly due to a broad 

particle size distribution. In simple dry vibrofluidized beds vibration is the only mode 

which fluidises the bed. In such a system, one observes that the behaviour of the fluidized 

material is strongly dependent on both the strength and type of shaking. Typically, the 

particles are set into motion via interaction with the boundary of the system, usually in a 

vertical position. When the boundary acceleration exceeds that due to gravity the particles 

are able to move ballistically, setting the system into a fluidized state. The motion of 
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particles in such a state resembles the classical picture of a molecular gas and a number of 

successful models have built upon this analogy over the past three decades (Lun, Savage et 

al. 1984, Jenkins, Richman 1985b). As the principal difference between a classical and a 

granular fluid is the inelasticity of particle-particle and particle wall collisions (Liu, Nagel 

1992, Nedderman R. M. 1992) a rational description requires considerations of factors 

such as the anisotropy, roughness of particles (which couples translational and rotational 

degrees of freedom), soft-particle interactions (which mean that particles deform during 

collisions) (Goldshtein, Kamenetsky et al. 2002) alongside the inherent transient nature of 

shaken beds. In addition, the coefficient of restitution is a function of collisional velocity 

and realistic particles tend to consist of varying sizes and shapes (poly-disperse) 

(A.Goldshtein, et al., 2002).  

It would be very difficult, however, to develop a hydrodynamic model with constitutive 

relations explicitly dependent on all of the above factors. With the exceptions of some 

attempts to approximately include friction and the use of a collisional model with a 

velocity-dependent restitution coefficient (A.Goldshtein, et al., 2002), to our knowledge 

most of these factors have not been incorporated to date. Besides this most of the work has 

been limited to steady state physics and often reduced to one dimensional models for 

monodisperse systems utilizing constitutive relationships applicable to near elastic systems 

(Martin, Huntley et al. 2005, Bougie, Moon et al. 2002, Serna, Marquina 2005). It is 

important, therefore, to test whether the available models capture the three dimensional 

time-dependent behaviour of granular flows.  

In this research work we use monodisperse vibrated beds as a tool to investigate the effects 

of different types of constitutive models for granular physics. For comparison and further 

investigation molecular dynamics simulations and experimentation are also carried out 

using the same test geometry.  

1.5 Aims and Objectives 

The main aim is to develop understanding of the physics of these flows by studying them 

in a realizable environment of dry vibrated cells by the means of experimentation methods 

such as NMR, particle level molecular dynamics simulations and bulk hydrodynamic 

models. With the focus on implementation using the commercially available resources of 

hydrodynamic methods on real time system, all the hydrodynamic simulations in this study 

are carried out using commercial package COMSOL with user defined methods.  
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Objectives for this work are outlined as follows: 

 To develop a viscous hydrodynamic model resolving time dependent behaviour of 

a vibrated granular bed in an axi-symmetric geometry incorporating different forms 

of the constitutive relationships.  

 To investigate the behaviour of the boundary conditions, constitutive relationships 

and the predicted scaling relationships under different loading conditions, vibrating 

frequencies and driving velocities.  

1.6 Summary 

The thesis is sectioned into eight chapters. The first one introduces the area by highlighting 

the importance and usefulness of granular materials followed by the aim and objectives of 

this research work. The second chapter summarizes the extensive literature particularly 

useful for the areas addressed in this research. The third chapter details the model 

development and the solution framework of the axi-symmetric hydrodynamic model with 

its validation for steady state case followed with time dependent solution and comparison 

of results with MD simulations and experiments at low frequencies in chapter four. In 

chapter five tests of these models to the limits of high frequency are included. Time 

varying effect of modulation in vibration amplitude of the base is studied in chapter six. 

Chapter seven focuses on the parametric characterization and tests of constitutive 

relationship predictions. This is followed with conclusion and future recommendations in 

the last chapter. 
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Chapter 2 Literature Survey 

In this chapter we survey the literature and background on granular flows in general and 

granular physics in dry vibrated beds in particular. An introduction to the terminologies 

often used in this area is also provided for the ease of readers. We revisit the standard 

theories used over the past few decades to understand the physics of these complex flows. 

Particulate level modelling using molecular dynamics simulations and continuum level 

hydrodynamics modelling is also included in this section. This is followed by an overview 

of experimental methods used in characterizing granular flows. At the end we highlight 

some of the areas which are of prime focus in current research on granular flows.  

2.1 Description of Granular flow behavior 

Granular gases are grains in a fluidized state caused by sufficiently strong forcing that 

leads to the stage when particles interact by nearly instantaneous collisions compared to 

the mean free time or time between collision (Nedderman R. M. 1992). Granular systems 

can be considered analogous to molecular gases, but there is obviously a disparity between 

the size of the molecules of a gas and the macroscopic particles. This does not pose any 

mathematical or physical issue. Most classical molecular gases are realized at macroscopic 

scale obeying the same laws as in microscopic scale. Thus all granular gases can be 

thought of macroscopic realizations of classical molecular gases obeying the same laws of 

motion. The major change or disparity lies in the kind of interaction these macroscopic 

particulates undergo. Macroscopic descriptions in classical gases interact elastically while 

inelasticity is the major implication concerning the behaviour of the collection of grains. 

The inelasticity results in the loss of kinetic energy upon impact.  

One method that has proved successful in describing granular flows is the kinetic theory of 

granular media (Lun, Savage et al. 1984, Jenkins, Richman 1985b, Kumaran 2000a, 

Montanero, Garzo et al. 2000). The kinetic theory of gases provides us with a useful 

ground to develop a continuum (hydrodynamic) model on an analogy basis (Haff 1983, 

Goldshtein, Kamenetsky et al. 2002, Jenkins, Richman 1985a, Ding, Gidaspow 1990). For 

this one needs to develop constitutive relations for closure of the continuity, momentum 

and energy balance equations (Ramrez R., Soto R. 2003, Garzo, Dufty et al. 2007, 

Kumaran 2004, Sela, Goldhirsch 2000, Garzo, Dufty 1999). A successful hydrodynamic 

description strongly depends on the correctness of these constitutive relationships. In the 

most recent theories and experiments, a common hypothesis employed for granular gases 



 

29 
 

is that of a gathering of uniform, smooth hard spheres in three dimensions; in two 

dimension disks are considered. Further simplification of collision characterization 

includes the fixed coefficient of normal restitution, denoted by .  

Kinetic theory provides the basic framework on the basis of which the general continuum 

equations for rapid granular flows can be derived through the conservation of mass, 

momentum and energy where the energy conservation equation includes the sink terms due 

to inelasticity. The closure of these equations can be provided with the kinetic theory 

giving the constitutive relations and the state law. At high speeds and dilute conditions the 

number of collisions between the particles is reduced and the time between the collisions 

becomes significantly large. At this stage the time scale attached to a given collision 

becomes negligible as compared to the time attached between collisions (Goldhirsch 

2003). This state leads to some of the approximations that helps in reducing the 

complexities of these flows. By assuming the collisions to be instantaneous and binary 

helps in defining pair distribution functions and collision integrals with relatively less 

mathematical complexity which are fundamental in describing the very basic continuum 

models.  

Continuum models relate the state variables in a balanced form producing the complete 

picture of the flow. In order to understand granular gases, state variables such as 

temperature and packing fraction carry significant importance due to their definition and 

use. Although they are defined in similar fashion as in molecular gases but carry 

significant physical aspects in granular mechanics. Detailed definitions and their 

importance are discussed in next section. 

a) Granular Temperature  

As in the case of molecular gases, one can define the macroscopic fields for granular gases, 

such as granular temperature, velocity and mass density (or number density). Granular 

temperature is generally defined in terms of square of the velocity fluctuation about its 

mean in any given direction (Evesque 1992, Goldhirsch 2003). Mathematically it is given 

by  

         (2.1) 
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Where m is the mass of particle, <v
2
> is the ensemble average speed of the particle about 

its mean velocity.  

Granular temperature is analogous to the temperature associated with thermal motion but 

temperature is purely a thermodynamic phenomenon and accounts for the internal energy, 

whereas granular temperature requires external agitation. This is a consequence of the 

inelasticity of the collisions between the macroscopic solid particles and the total internal 

energy possessed by the grains associated with the granular temperature is always 

released/dissipated due to inter-particle collisions and/or collisions with the container. 

Thus in order to maintain the granular temperature continuous input of energy needs to be 

supplied to balance the energy lost in dissipative collisions. However, there is a key point 

about the granular temperature from the perspective of kinetic theory.  

In granular systems equipartition does not necessarily exist and granular temperature may 

vary in orthogonal directions (Wildman, Parker 2002). Non-equipartition can be a 

significant contributor in processes such as mixing and segregation of poly-dispersed 

granular flows (Galvin, Dahl et al. 2005). In a Cartesian reference system the directional 

components of granular temperature are given by 

         (2.2) 

         (2.3) 

         (2.4) 

where vx, vy and vz are the fluctuating components of the velocity in the respective x, y and 

z directions. 

b) Packing Fraction 

Another key variable in describing the state of a granular flow is the packing fraction also 

commonly known as the solid fraction. This is a dimensionless quantity and is equal to the 

fraction of a unit volume (or unit area in two dimensions) that is occupied by the 

solid/granular material (Nedderman R. M. 1992, Carnahan, Starling 1969), such that  

           (2.5) 
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where Vp is the volume of the particles and VT is the total volume. Number density n is 

related to the packing fraction  through  

          (2.6) 

where d is the diameter of the particles.  

c) Driving hydrodynamic models and constitutive relationships 

In the past few decades efforts have been made to model the behaviour of granular flows  

using the continuum hypothesis. One of the first models was proposed by Haff in 1983 

(Haff 1983). Haff proposed to model the energy dissipation by considering the particle 

collision details. The leading order velocity distribution involving these dissipative 

collisions was assumed to be that of Maxwellian (Maxwell-Boltzmann distribution); such 

an argument is valid for nearly elastic systems. With increase of inelasticity such 

approximations tends to fail. The constitutive relationships were largely developed through 

the scaling arguments in Haff‘s model. Using Maxwellian distributions Jenkins and Savage 

further developed a theory of uniform smooth near to elastic particles (Jenkins, Richman 

1985b, Jenkins, Savage 1983). By taking the general forms of the probability distribution 

of a single particle velocity and for the case of binary collisions, the expressions for 

continuity, linear momentum and fluctuation of kinetic energy and the energy dissipation 

were derived (Montanero, Garzo et al. 2000, Brey, Dufty et al. 1999). 

Further developments in the formulation of hydrodynamic models utilize the method of 

moments by integrating Boltzmann-Enskog kinetic equation with various weight functions 

to obtain transport equations. This method requires ad hoc approximations for the singlet 

distribution function (SDF) appearing in the Boltzmann-Enskog equation. Different 

approximations of the SDF have been used (Lun, Savage et al. 1984, Jenkins, Richman 

1985b, Jenkins, Richman 1985a, Ding, Gidaspow 1990, Richman M.W., Martin R.E. 

1992) in problems dealing with rapid granular flows. Another continuum description for a 

vibrofluidized granular bed is based on considering momentum conservation in the vertical 

direction and the energy conservation equation to describe the dynamics of the bed 

(Richman M.W., Martin R.E. 1992). In this analysis, asymptotic techniques were used to 

calculate the velocity distribution function. The description includes the transport of 

momentum and energy due to viscous and thermal effects in contrast to the Euler-type 

equations obtained from Goldshtein, et al. (Goldshtein, Shapiro et al. 2006). Recently 
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transport theory for classical gases has been extended to the granular gases to obtain 

Navier-Stokes order equations and transport coefficients in terms of inelasticity. Such 

methods are also known as Chapman-Enskog solutions of the Boltzmann equation and 

have been applied to low density systems (Brey, Dufty et al. 1998). A kinetic theory 

description specific to vibrated beds is developed by Kumaran (Kumaran 2000a) by using 

asymptotic analysis to calculate velocity distribution functions in the limit of maximum 

base velocity being small compared to the root mean square particle velocity. In the limit 

of a nearly elastic system, the transport coefficients for momentum and energy were 

derived. 

Generalization of both Boltzmann and Enskog kinetic equations allow inelastic collisions 

to provide a basis for granular media. The Revised Enskog theory (RET) for elastic 

collisions is a well known accurate kinetic theory for conventional fluids (Garzo, Hrenya et 

al. 2007) which covers the entire fluid domain. It can also describe the crystallization phase 

as well which is of relevance for granular media undergoing clustering and dense pattern 

formations (Garzo, Dufty et al. 2007). The difference between standard Enskog theory 

(SET) and revised Enskog theory (RET) traces to the choice of pair correlation function. 

RET treats the pair correlation as a function of local concentration as well as its gradient 

while SET neglects the gradients (Montanero, Santos et al. 2007). Brey et al. proposed 

models based on RET for dilute and dense regimes for inelastic gas of particles (Brey, 

Dufty et al. 1999). By expanding the field gradients about homogeneous cooling state 

(HCS), hydrodynamic equations were developed for time-dependent velocity distribution 

function and temperature. Exact results for the distribution function and transport 

coefficients in terms of the linear integral equation solution have been developed by Garzo 

and Dufty (Garzo, Dufty 1999) for the mono-disperse case. This model is particularly 

useful since it describes the system over a wide range of fluidic density and dissipation. 

This has been lately extended to poly-disperse media (Garzo, Dufty et al. 2007, Garzo, 

Hrenya et al. 2007).  

2.2 Molecular Dynamics Simulations on Granular Flows 

Molecular dynamics provides an insight into the behaviour of macroscopic particles for 

systems ranging from dilute to dense regime depending upon the computational resources. 

It acts as a virtual experimental setup although restricted due to some of the physical and 

computational limitations. Molecular dynamics simulation models are particle level models 

describing the nature of particle and its interaction physics when it comes to terms with 
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neighbours. Molecular dynamics is by far the closest replica of the experimental setups and 

an handful tool in studies involving statistical mechanics. By utilizing the laws of physics 

relating particle motion and interaction (Shäfer, Dippel et al. 1996, Stevens, Hrenya 2005) 

in a typical MD simulation the coordinates of each of the simulated particles are known at 

all instances. This helps in revealing the insight of the granular behaviour which is difficult 

to capture in experimental methods. MD simulations are also flexible allowing us to 

introduce variations such as different natures of particle interactions (Shen, Hopkins 1988), 

introduction of shape and surface roughness (Kumaran 2006a, Kumaran 2006b) and poly-

dispersion (Wildman, Parker 2002, Paolotti, Barrat et al. 2004).  

Through ensemble averaging of the respective locations and velocities the hydrodynamic 

scale physics can be generated detailing the temporal and spatial fluctuations of 

hydrodynamic quantities (Ramrez R., Soto R. 2003, Sunthar 2001). MD simulations have 

been used in a number of research works highlighting, validating and explaining granular 

physics. Phenomenon such as convective rolling (Ramrez R., Soto R. 2003, Wildman, 

Martin et al. 2005), energy scaling (Warr, Huntley 1995), dynamic wave propagation 

(Alain, Emmanuel et al. 2005, Bougie, Moon et al. 2002), clustering and stationary waves 

(Paolotti, Barrat et al. 2004, Sunthar, Kumaran 2001) are a few of the findings 

demonstrated by MD simulations. Apart from their versatile applications and benefits, 

these models are still computer simulations having limitations such as excessive 

computational requirements, round off errors and truncation errors. Despite that, these 

methods are frequently used to test the hydrodynamic models, in following sections we 

summarize a few commonly used methods for particle level simulations.  

a) Cellular Automata 

Cellular automata uses a lattice or grid to map the domain. Each cell state describes the 

physics depending upon its neighbouring cells and the transport law/rule. The properties of 

each cell within the lattice at time t is related only to the properties of that cell and its 

neighbours at t-1. This method is particularly helpful in studying pattern formations in high 

density beds. In real flows, large scale features have been reported with considerable 

accuracy (Baxter, Behringer 1990). 
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b) Particle dynamics modeling 

Particle order dynamics modelling simulations are amongst the most regularly used and 

widely accepted methods for granular media. Due to their accuracy with lesser 

computational requirements, many granular systems have been studied with these 

techniques such as (Marshall 2009), showing great deal of agreement between simulations 

and experiments. 

This is an iterative method with simple algorithm working along the lines of the general 

steps summarized below: 

 The position and velocity of each grain is identified at time instant t1. 

 Based on grain positions, collision is detected amongst the grains and or boundaries 

of the container. 

 Post collision velocities are obtained from the collision rules. 

 Velocities and positions of each of the grains are updated for the next time or the 

collision depending on the kind of sphere model selected.   

The iterative loop runs till the number of collisions or the simulation time criteria is met. 

Depending upon the detail of the interaction between the particles two methods have been 

commonly used in literature. Details of these two models are included in the following 

sections.  

c) Distinct Element modeling 

In distinct element modeling (DEM) the interaction of the participating particles involve 

consideration of grain elastic nature. The simulation solves for the new value of position 

and velocity for each time step calculated through the basic equations of motion. 

                    (2.7)               

        (2.8) 

The simulation depends on the interaction physics of the grain, namely the soft sphere 

model. In the soft sphere case the dynamics of each collision is examined in detail. The 

deformation of the sphere is accounted during the collision. It allows grains to interact for 

long time durations with multiple contacts specially applicable for slow dense flows. 

However, this detail description is at the cost of high computational requirements as well 
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as input data for the complex input parameters modelling the softness of the sphere. 

Through those parameters and the force law of interaction (Shäfer, Dippel et al. 1996, 

Marshall 2009) the time varying deformation in the grains during collision is estimated and 

the net acceleration is calculated for each grain. DEM is amongst the accurate tools used in 

the molecular dynamics. 

d) Event driven simulations 

As in a rapid granular flow the grains interact with each other by instantaneous collisions. 

The forces act only when there is a collision and the particles usually move in a uniform 

gravitational field between collisions. The Event Driven (ED) simulation takes advantage 

of the fact that under gravity, particles travel in parabolic paths between successive 

collisions, and the time required for the next collision can be explicitly calculated from a 

knowledge of the particle positions and velocities (Duran 2000). The ED simulation 

technique proceeds by calculating the time required for the next collision, and advancing 

all the particles' positions to their positions at the next collision. The colliding particles are 

allowed to interact by a collision rule giving a set of post collision velocities for the 

particles. The simulation then advances to the next collision event. In contrast to the soft 

sphere simulation, the time advancement in the ED simulation is in steps of collisions 

rather than in time steps. Since in this method only binary collisions are considered, the 

collision times of the particles can be easily calculated. The change in momentum of the 

wall is neglected because its mass is large compared to that of the particle and the wall is 

assumed to affect only the normal component of the particle's velocity.  

Based on inelastic hard sphere models, MD simulation accelerates the particles by 

calculating the time between instantaneous binary collision. These collisions conserve 

linear momentum, but dissipate energy (Sunthar 2001). The equations describing the 

dynamics for the particle wall and particle-particle collisions are given as 
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 (2.10) 

where e is the coefficient of restitution for particle-particle collision and we  is the 

coefficient of restitution for particle wall collision. iv̂  is the velocity vector of particle i, in̂  
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is the unit normal vector that points from the centre of particle i to the point of contact with 

the wall and n̂  is the unit centre to centre vector between the colliding pair i and j. For all 

of our work using event driven simulations in this thesis the particle interactions are 

modelled with constant value of coefficient of restitution e. 

2.3 Testing hydrodynamic models 

Although there have been considerable advances in our theoretical understanding of 

granular flows, validation of these models is challenging. Continuum equations of Euler 

and Navier-Stokes orders using Kinetic theory have been developed for granular medium 

(Lun, Savage et al. 1984, Jenkins, Richman 1985b, Richman M.W., Martin R.E. 1992) 

with certain simplifications. Such as these models usually assume inelastic hard-sphere 

binary collision as the base to simplify collision integrals. Previously these models have 

been tested with idealized scenarios which are difficult to achieve in a lab environment. 

More recently these equations have been put to work on experimentally realizable granular 

systems such as shear cells, rotating drums and fluidized beds for viability (Hrenya, Galvin 

et al. 2008, Huan, Yang et al. 2004, Wildman, Martin et al. 2008).  

But granular materials in general are notorious to observe especially for the difficulties 

they pose to the experimenter. Granular gases in particular been most difficult to observe 

but at the same time show a wide range of phenomena which needs investigation and 

visualization. Amongst the most widest range of non-linear phenomena observed in 

granular flows only a handful of them have been understood completely. Thus by 

comparing the predictions of numerical simulations against the experimental findings, 

much of the underlying physics could be understood. In this section first we introduce and 

review some of the experimental techniques used for analyzing and validating the 

mechanics of granular flows. 

a) Experiments on Granular Flows 

Over the last decade technological advancements have enabled experimentalists to track 

and follow the motions of the grains, thus enabling direct experimental tests of theoretical 

predictions. A wide variety of experiments ranging from the ‗bucket method‘ for collecting 

grains that fall off the chute in order to find the flow rate (Johnson, Nott et al. 1990) to 

sophisticated optical and radioactivity tracking techniques have been employed in this 

field. These techniques include high-speed photography (Warr, Huntley et al. 1995, Warr, 
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Huntley 1995) and—in three dimensions—positron emission particle tracking (PEPT) 

(Wildman, Huntley et al. 2001) and nuclear magnetic resonance (NMR) (Huntley, Martin 

et al. 2007, Huan, Yang et al. 2004, Xiaoyu Yang, Candela 2000, Serna, Marquina 2005, 

Hill, Caprihan et al. 1997). The techniques give an insight into granular behaviour by 

allowing the tracking of single particles or high resolution measurement of the 

hydrodynamic fields, thereby enabling the models of granular flow to be tested in detail. 

Here we detail the working principle and advantages of two advance techniques, PEPT and 

NMR, successfully used for analyzing dry granular flows. 

The PEPT technique involves labelling a tracer particle with radioactive nuclei in a 

granular bed. With time the nuclei decay by emitting a positron which rapidly annihilates 

with a local electron, producing two gamma rays travelling in opposite directions. Two 

position sensitive detectors placed either side of the system detect the gamma rays. A line 

can later be drawn between the two positions, along which the emitting particle must have 

lain. PEPT can typically locate the tracer particle up to 500 times per second, with an 

accuracy of 1-2 mm when the particle is travelling at 1 ms
-1

. With the tracer particle used 

in PEPT is identical to all the others in granular flow, apart from its radioactivity, the 

trajectory obtained is representative of all the particles, and can be used to calculate the 

system distributions. Each location of tracer is attributed a coordinate in space and time 

(x,y,z,t). Then the grain is followed for some time with the square of the displacement 

being recorded for every subsequent location event. Once this has been completed for 

every grain location in each segment, the mean squared displacement is binned according 

to the time of location, and the ensemble average is calculated. The mean square speed and 

thus the granular temperature is extracted from the data through fitting. This technique has 

been recently used successfully to study highly fluidized dry granular beds (Wildman, 

Martin et al. 2005, Martin, Huntley et al. 2005) with results capturing the presence of 

convection rolls.  

NMR (nuclear magnetic resonance) imaging is one method which has shown great promise 

for observing time resolved behaviour of grains in three dimensions. The system detects 

the liquid base of the moving particles and thus such granular materials can only be used 

which can help generate detectable signal for NMR. NMR methods have been recently 

used to measure short-time three dimensional displacement of naturally occurring grains in 

a system of mustard seeds vibrated vertically (Huntley, Martin et al. 2007). This technique 

obtains time averaging of the granular motion over a specific time interval. In this interval 
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the grains can move ballistically thus a direct measurement of granular temperature profile 

is made possible. Using specially designed sequence most of the particles  in a 

chamber/cell can be traced with high level of accuracy. It can resolve data in a three 

dimensional frame but at the cost of time resolution. NMR is used for some of the 

experimental work carried out in this research. In forthcoming chapters further details are 

included on the setup and processing of the technique. 

b) Vibrofluidized bed 

Amongst many apparatuses vibrofluidized bed has been used as an idealised and simple 

system in which the granular behaviour is relatively simplified and can be a testing ground 

for models of granular flows. The mechanism consists of a vessel that undergoes high-

frequency agitation of sufficient amplitude to fluidize the granular medium contained 

within it (Fig. 2.1). The energy input into the bed is through collisions between the moving 

lower boundary and the particles. A number of experimental techniques such as high-speed 

photography (Warr, Huntley et al. 1995), positron emission particle tracking (PEPT) 

(Wildman, Huntley et al. 2001), nuclear magnetic resonance (NMR) (Huntley, Martin et al. 

2007, Xiaoyu Yang, Candela 2000, Hill, Caprihan et al. 1997) have been used to study 

granular flows in vibrated beds.  

Vibrating method of fluidization has been found to yield standing wave pattern formation 

(Pak, Behringer 1993), convection (Wildman, Huntley et al. 2001), clustering (Duran 

2000), steady-state flow fields far from the plate (Viswanathan, Wildman et al. 2006) and 

shocks (Bougie, Moon et al. 2002). In particular, vibrations result in sound propagation in 

dense vibrated beds with low amplitude, leading to phenomena such as convection rolls, 

heaping, standing waves and travelling waves (Liu, Nagel 1992, Pak, Behringer 1993, Liu, 

Nagel 1993). At high base velocities the particles are highly energetic and the bed becomes 

dilated.  In this regime, the time of contact between the particles during a collision is small 

compared to the time between collisions, and momentum and energy are transmitted 

primarily due to instantaneous collisions between the particles. No sustained frictional 

contact can be maintained between particles, phenomena such as liquid-like streaming 

motion, wave propagation, gas like density variations and shock waves as a result of 

fluidization of the particles are observed (Alain, Emmanuel et al. 2005, Luding, Clement et 

al. 1996, Huntley, Martin et al. 2007, Wildman, Martin et al. 2005, Pak, Behringer 1993, 

Warr, Hansen 1996). 
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Despite simple system of vibrated bed, the nature of granular materials is inherently 

complex. For example in the case of classical gases or simply elastic spheres in the state of 

thermal equilibrium, the velocity distribution function is a Maxwellian. On the contrary for 

simple inelastic flow systems, the velocity distribution deviates from a Maxwellian even 

for the case of smooth spherical particles as there is no such state of thermal equilibrium 

(Farkas, Tegzes et al. 1999, Warr, Hansen 1996, McNamara, Luding 1998). The simplest 

possible state for the case when the collisions are inelastic is that of  steady, homogeneous 

cooling. As the flow gets denser the pair distribution function for a colliding pair, 

consisting of product of velocity distribution function and radial distribution function, 0g

(Evesque 1992), becomes significant. This incorporates the effects of the volume occupied 

by the spheres on their collision frequency. However the functional form of the radial 

distribution function 0g already exists (Carnahan, Starling 1969). Using the assumption 

that the error proportional to the square of the quantities are small, the velocity distribution 

function obtained for these flows can be approximated to that of elastic systems. Thus 

similar expressions for the pressure tensor and the energy flux vector are calculated by 

using the velocity distribution function and Enskog‘s extension of the assumption of 

molecular chaos (Garzo, Dufty 1999, Garzo, Dufty et al. 2007). 

   

 

 

 

 

 

 

 

 

Figure 2-1: Schematic sketch of a vibrofluidized bed. 
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Some of the other simplifications for the solution of vibrated beds consider the amplitude 

of vibrating surface to be small compared to the succeeding collisions of the particles and 

the frequency of vibration is assumed to be large compared to the frequency of the 

collisions of the particles. This ensures that the velocity of the particles colliding with the 

vibrating surface is uncorrelated with the velocity of the surface itself. It is important to 

mention here that the dynamics of such a system then only depends on the mean square 

velocity in the limit where the velocity of the surface is small compared to the fluctuating 

velocity of the particles in the bed. These simplified models have been tested with 

idealized scenarios, and more recently these models have been put to work on 

experimentally realizable, time-dependent granular systems for viability, where Navier-

Stokes order continuum equations are simulated to investigate the strongly temporal and 

spatial properties of vertically oscillated granular bed (Hrenya, Galvin et al. 2008, Huntley, 

Martin et al. 2007, Kumaran 2008). Still there is evidence of even higher order effects 

which has suggested the need of reviewing the form of constitutive relationships (Hrenya, 

Galvin et al. 2008).  

Besides bulk behaviour the boundary motion in vibrated bed is of particular interest as it is 

usually periodic and therefore a possible cause of time dependent effects in the bed 

properties. Evidence from experimental findings, molecular dynamics simulations and 

hydrodynamic modelling by Bougie et al. (Bougie, Moon et al. 2002) and Huntley et al. 

(Huntley, Martin et al. 2007) has shown that time dependent effects cannot always be 

neglected. Nevertheless, the dynamic behaviour of a fluidized granular material shows 

some striking similarities with the behaviour of a fluid in thermal equilibrium, e.g. in its 

microscopic structure (Warr, Hansen 1996), self-diffusion properties (Wildman, Huntley et 

al. 1999) and convection behaviour (Wildman, Huntley et al. 2001). In the following 

section a detailed review of the vibrating base boundary is provided with its influence on 

the modelling and boundary conditions for granular flow.  

c) Boundary Conditions for vibrated bed flows 

The nature of the boundary conditions strongly influences the physics of granular materials 

specially the vibrating base in case of vibrated beds. Generally viscous classical fluids have 

no slip boundary conditions for momentum transfer with a wall which allow independent 

specification of the material properties to that of the flow field. The effect of wall is mostly 

felt in local regions in conventional fluids unless compressible fluids at high speed interact. 
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This is opposite to what we observe in granular flows. Here the flow behaviour at or due to 

the solid or free surface is an integral part of the solution for the entire flow field.  

Considerable efforts have been made to understand their influence both experimentally and 

analytically. The experimental work of Savage & Sayed (Savage, Sayed 1984) shows the 

effect of rough walls. Profound effects of boundaries on the granular flow properties have 

been reported (Richman M.W., Martin R.E. 1992, Warr, Huntley 1995, Richman 1993, 

Jenkins, Louge 1997) which indicate that the drive surfaces are equally important as the 

granular material itself in determining the results of the test.  

Boundary conditions are modelled from the first principles of momentum and energy 

balances at the surface (Jenkins, Richman 2006). Thus by satisfying the expressions for the 

balance of momentum and energy such granular boundary effect could be studied. We find 

considerable work on modelling the wall as rough particles which can be treated as 

granular materials principally and at high speeds the effects of shear can be neglected due 

to slip even leading to instantaneous collision (Warr, Huntley 1995, Richman 1993, 

Jenkins, Louge 1997). Through various methods of averaging, conditions have been 

obtained that apply to two dimensional systems of identical disks or three dimensional 

systems of identical spheres that interact with smooth bumpy boundaries (Jenkins, Louge 

1997).  

d) Comparison of methods for heat flux predictions at vibrating 

boundary 

Calculations shown by Richman (Richman 1993) quantified the heat and momentum flux 

for the rapid granular flows of identical smooth spheres that interact with bumpy 

boundaries through inelastic collisions. The boundaries were considered to be non-

stationary as well and could translate randomly with given specific mean velocities along 

with deviations about the mean with specified fluctuation velocities. Richman produced 

expressions for mean energy transfer in all the three orthogonal directions moving with a 

mean square velocity of  3V
2
 (V

2
 for each of the direction) with V being the mean velocity 

of the base. The relationship includes addition and removal terms scaling with the square 

of base velocity and granular temperature. The basis of these calculations were upon the 

Maxwellian velocity distribution functions that relate and describe the velocities of both 

the flow particles and the boundaries. The rate of exchange was also calculated for the case 



 

42 
 

of linear momentum and kinetic energy between the granular particle and wall particle for 

a nearly flat surface. 

Later Warr and Huntley showed detailed calculation for a triangular waveform inputting 

energy (Warr, Huntley 1995). A detailed analysis considering all possible combinations of 

impacts with possible speeds and positions of  a particle upon a vibrating base is provided 

by Warr & Huntley. The energy was calculated using the mean change in velocity squared 

of the particles due to collision and it was evaluated numerically through an Energy 

integral Ie for a given base velocity magnitude. For these calculations the requirement is on 

the vibration period which should be much shorter than the mean time between successive 

collisions made by a given particle and the base. This analysis showed how the energy 

integral varies with the speed of the incident particles and the velocity of the base while 

taking into account the coefficient of restitution between the particle and the base. 

Remarkably it is shown that high incoming speeds of particles do not necessarily guarantee 

high energy inputs for small base velocities. In fact it is also possible for incident particles 

to lose energy on the average during an impact. This allowed direct comparison to the 

work of Richman for the mean square velocity of base (3V
2
) and allowed a calculation of 

heat flux in a one dimensional system with flat boundaries. Kumaran also proposed energy 

input expressions for vibrated beds (Kumaran 1998). It gives an energy input proportional 

to the mean square speed of the bed. Although it is easy to implement, it does not allow for 

the possibility of energy extraction from the bed, nor does it take into account the 

coefficient of restitution between the particle and the base.  

All the formulations rely on the continuum level description of granular temperature and 

base densities. For flow in the Knudsen regime, such description of continuum level state 

variables are not necessary accurate (Galvin, Hrenya et al. 2007). In the case of Warr and 

Huntley, the separation of time scales at the base can often become unclear and the 

assumption of Warr and Huntley is likely to break down in such regions. On the other 

hand, if the base time period reduces significantly as compared to mean free time, the 

assumption of instantaneous collisions also become susceptible and the current forms of 

boundary conditions need to be analyzed in such a scenario. In this thesis detailed 

discussions on these issue are covered in the forthcoming chapters. Interestingly in all the 

cases, the heat flux predicted by the above mentioned formulations provide a steady state 

expression and cannot be directly employed to study time varying behaviour. The phase 
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resolved behaviour of energy input and removal is calculated for the solution of time 

varying granular hydrodynamic model introduced in this thesis. 

2.4 Open Issues  

As summarized in the previous sections, research and development over the past few 

decades have revealed many of the complex and critical aspects of granular flows but still 

a number of characteristics remain poorly understood. Anisotropy, non-equipartition, 

nonlinear time dependent behaviours, unsteady pattern formations, temperature inversion, 

burnett order effects, non-equilibrium ratchet motions and scaling behaviour are few 

amongst many of the observed and expected phenomena in a dry granular vibrated bed.  

Not only that most of these phenomena are non-linear but also are interlinked in complex 

fashion and the different formulations of constitutive relationships need critical analysis for 

application and validation. As the loading and dissipation increases even the near to 

idealized testing equipment produces highly non-linear phenomena requiring studies of 

phase transitions, super burnett order effects in bulk and near the boundaries to understand 

the complexities.  

a) Polydisperse granular flows 

An aspect of real life rapid granular flows is the variations of shape and sizes. Controlling 

the mixing/de-mixing of granular flows containing more than one species (a polydisperse 

system) is a problem faced by a wide range of industries. Often one likes to enhance the 

mixing (e.g., blending of pharmaceutical powders), but at other times one might want to 

force species segregation (e.g., separation of mined ores). Unfortunately, the physical 

mechanisms that govern mixing are not well understood, and industry faces considerable 

difficulties when trying to predict and control mixing/separation processes (Paolotti, Barrat 

et al. 2004). To be able improve these particle processing techniques, one requires 

significant control and a deep understanding of the physics of granular flows. When there 

is more than one size or mass phase within the system, the difficulties in predicting the 

bulk behaviour are considerably increased. Variations in shape and size also introduced 

problems such as non-equipartition and anisotropic effects (Wildman, Parker 2002). 

Most of the computational hydrodynamics descriptions and constitutive relationships have 

been limited to steady state monodisperse granular flows. The recent developments in the 

theoretical modelling of polydisperse granular flows and their constitutive relationships 
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(Garzo, Dufty et al. 2007, Garzo, Hrenya et al. 2007) have raised opportunity for 

researchers to analyze and test the predictions for such flows. On the other hand testing and 

validation of different constitutive relationships for dense, time-varying, mono-dispersed 

granular flow still remains an open question. In this dissertation we only aim at the 

development of computational models for mono-disperse flows only using different forms 

of constitutive relationships. However we expect that the methodology used in this thesis 

can be extended to incorporate bidisperse and polydisperse flows with necessary 

modifications. 

b) Form of constitutive relationships 

With developments in the theoretical understanding of granular flows, different 

formulations of constitutive relationships have been proposed for different categories of 

monodisperse granular flows such as dense (Garzo, Dufty 1999), dilute (Jenkins, Savage 

1983), smooth (Sela, Goldhirsch 2000), near elastic (Lun, Savage et al. 1984, Jenkins, 

Richman 1985b) and friction dominated (Kumaran 2008, Garzo, Hrenya et al. 2007). But 

only a handfull of these models has been tested for validation against experimental 

findings and amongst them near elastic models have found much appreciation (Hrenya, 

Galvin et al. 2008, Viswanathan, Wildman et al. 2006, Martin, Huntley et al. 2005). 

Therefore it is necessary to incorporate and validate the dense inelastic granular flow 

formulations with comparison against the established models and experimental findings. 

Especially with the fact that these formulations introduce additional constitutive 

relationships owing to inelasticity of the granular materials. In this dissertation we explore 

two types of constitutive formulations for monodisperse medium of granular flows 

covering dense highly dissipative mono-dispersed granular flows.   

c) Time variant effects in granular gas 

Most of the theoretical framework of granular flows has focused on the steady-state nature. 

Granular physics is unsteady by nature when subjected to flow. When subjected to 

vibration granular materials exhibit a variety of phenomena which are not only non-

uniform in time but also in space. Unsteady flow patterns such as convection have already 

been reported in the literature, for instance (Sunthar 2001, Bougie, Moon et al. 2002, 

Rericha, Bizon et al. 2001, Khain, Meerson 2003) while axial dynamic wave propagation 

is explored experimentally and through hydrodynamic simulations (Bougie, Moon et al. 

2002). Alongside temporal effect spatial variations in three dimensions are also observed 
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to be linked with the side wall dissipation and input base parameters (Wildman, Martin et 

al. 2005). Thus suggesting some link between the radial variations and base dynamics on 

the granular bed physics.   

A one dimensional time-resolved hydrodynamic simulation revealed the axial dynamic 

fluctuations (Huntley, Martin et al. 2007) but is incapable of simulating the effect of radial 

variations under the influence of dissipative side wall. A three dimensional time varying 

picture with appropriate dissipative side wall conditions is the way to investigate the 

variations of granular cell. In this thesis an introduction of time varying axi-symmetric 

hydrodynamic model and its implementation and validation is included.  

d) Testing Navier-Stokes order effects 

Evidence of higher than Navier-stokes order effects has been reported in granular flows 

(Hrenya, Galvin et al. 2008). The exact form of the dissipation, stress tensor and the 

variations of bulk parameters are likely to induce Burnett and super Burnett order effects 

(Galvin, Hrenya et al. 2007, Van der Weele 2008). By analyzing the variations of Navier-

Stokes order characteristic parameters a strong hint about the nature and order of flow and 

their gradients in the bulk granular dynamics can be studied.  

By characterizing bulk flow parameters and their scalings in the asymptotic limits, it is 

expected to explain bulk physics in detail at least for steady state configuration and some 

of the analytical models of V. Kumaran have shown promise (Kumaran 2000a, Kumaran 

2000b). Such developed non-dimensional parameters help in our understanding of granular 

flows and can lead to the ways to model them. 

In our collaboration with V. Kumaran (personal communication), new parameters using 

the kinetic theory of granular gas were proposed which scale the nature of granular flow in 

a dry granular bed. This research work explores the predicted parameters, their related 

constitutive relationships and the scalings using an hydrodynamic model and molecular 

dynamics simulation. 

2.5 Summary 

A comprehensive survey of research work on granular flows is presented summarizing the 

kinetic theory, hydrodynamic modelling, molecular dynamics and experimental methods 

used over the past decades. The literature survey highlights a number of aspects in granular 
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physics with some of them still requiring further understanding. A summary of the grey 

areas is also included which are the subjects of research in present work. In the 

forthcoming sections the focus will be on dry granular flows in vibrated beds with the 

hydrodynamic models in three dimensions and temporal effects. Results are compared 

against molecular dynamics simulations and experimental findings using NMR and PEPT. 
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Chapter 3 Time varying axi-symmetric hydrodynamic model 

3.1. Introduction 

Modelling rapidly flowing granular flows is challenging. Broadly speaking, there are two 

levels of granular flow modelling, particle order and continuum order. One can take a 

particle level modelling approach such as that used in the discrete element method (DEM). 

This can be a powerful method, but it is computationally intensive which often becomes 

prohibitive with a large number of particles. An alternative is to use a continuum 

description of the system. A successful method for this has been in the development of 

closure through derivation of the constitutive relationships using the kinetic theory of 

granular gases. Relatively speaking, the continuum approach is far less computationally 

exhaustive than discrete elements modelling as the effects of loading conditions and 

packing fraction do not directly influence the solution time. With a set of governing 

equations, boundary conditions and closure fulfilment, it is much quicker to obtain the 

hydrodynamic level solutions than to perform particle level simulations. Although it is 

possible to develop programmes for solving hydrodynamic problems oneself, commercial 

software, such as Fluent and COMSOL, is available to solve these highly nonlinear 

problems numerically. With state of the art pre- and post-processors these commercial 

codes are also flexible in providing interfaces with user defined functions. In particular, 

COMSOL offers a user defined partial differential equation module in which 

implementation and modification of the equations and boundary conditions is relatively 

easy and accurate. In this Chapter we present a model for a vibrated three dimensional 

granular beds in which a numerical solution will be obtained by the Finite Elements 

approach (FE) as offered by COMSOL. 

3.2. Hydrodynamics of vibrofluidized granular flow 

In a granular flow, continuity and momentum are generally conserved, but kinetic energy 

is dissipated during collisions leading to a requirement of a continual input flux to balance 

the energy input rate with the dissipation rate and maintain the flow. This dissipation and 

time-dependent excitation highlights two problems that need investigation. Firstly, near-

elastic models have been broadly successful in describing granular flows (Jenkins, 

Richman 1985b, Brey, Dufty et al. 1998, Lun, Savage et al. 1984), but it has become clear 

that as the system becomes more dissipative the weaker the description becomes and there 

is a need to re-evaluate the constitutive relations for granular flows to facilitate models 
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built for a larger range of coefficient of dissipation and packing fraction (Garzo, Dufty et 

al. 2007, Garzo, Dufty 1999). Secondly, up until recently, models for granular flow have 

not been experimentally tested in a transient or time dependent system. Evidence of the 

strong time dependent effects has been seen in wave motion at low frequency (Bougie, 

Moon et al. 2002), strong fluctuations over the course of vibration cycle (Huntley, Martin 

et al. 2007) and in the pattern formation seen in dense, highly periodic flows (Bizon, 

Shattuck et al. 1998). Therefore, the task here is twofold. Firstly, we look at the ways of 

implementing improved models based on the revised Enskog method (Goldhirsch 2003) in 

a realizable test system such as a vibrated bed. This requires restructuring the steady state 

viscous models of Vishwanathan (Viswanathan, Wildman et al. 2006) to undertake the 

work of Garzo and Dufty (Garzo, Dufty 1999). Secondly, we aim to develop a 

computationally friendly axi-symmetric hydrodynamic model using these constitutive 

relationships that includes the time dependent effects. We will address these tasks over the 

following chapters. 

In this chapter we will describe the time varying hydrodynamic models in detail with two 

different forms of constitutive relationships and the numerical solution procedures and will 

present an initial validation through testing against steady state experimental results. In the 

subsequent chapters, analysis will be extended to a range of time-dependent systems to test 

the range of validity of our models in low frequency, high frequency and pulsed vibro-

fluidised beds.  

3.3. Hydrodynamic model 

A granular flow must follow conservation laws of mass and momentum, and a balance 

relationship for energy. We give the governing relations for each below. 

a. Non-Isothermal Flow 

The generalized non-isothermal flow model is particularly useful for studies relating to 

heat transfer where there are variations in density and temperature. This form of the flow 

model is particularly helpful in implementing the constitutive relationships relating to 

temperature variations with slight compressibility effects (Chung 2002). These equations 

themselves arise from balances of mass and momentum. We consider the system to be 

compressible and therefore the stress tensor includes terms relating shear and normal 

strains to the stress. In our formulation, the momentum and mass balances are given by 
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  (3.1)  

         (3.2) 

where  is the density; u is the velocity field; p is the pressure and dvK, are the shear 

and bulk viscosities respectively. Body forces are included in the momentum balance, , 

which can be due to, for example, gravity. 

b. Convection Conduction Equation 

The generalized energy balance equation is constructed by accounting for the conduction 

as well as convective heat transfer into a volume. For dissipative granular flows, extra 

terms appear in the energy balance accounting for the dissipation during inelastic particle-

particle and particle-wall collisions. The heat balance within the system is described by 

       (3.3) 

where T is the granular temperature scaled by the mass of particle,  is the heat flux due to 

conductive part of heat transfer, Q is a sink or source term and t is time. 

c. Constitutive Relationships 

In order to close this nonlinear Navier-Stokes-like set of relations (Eq. 3.1, 3.2 and 3.3), 

one requires additional equations that describe the relationships between fluxes and 

gradients in the fields. The state law used for the model is given by 

         (3.4) 

where G is given by  and  with m is the mass of a single particle and d is 

the particle diameter.  

The radial distribution function at contact, go, accounts for the increase in collision rate 

over that predicted by Boltzmann at high densities due to volume effects and we use the 

approximation suggested by Carnahan (Carnahan, Starling 1969) and Torquato (Torquato 

1995),   
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       (3.5) 

We used two sets of constitutive relationships for viscosity, thermal conductivity and 

dissipation, derived from the work of Jenkins on one hand, and on Garzo and Dufty on the 

other (Jenkins, Richman 1985b, Garzo, Dufty 1999). Firstly we introduce the Jenkins' 

formulation (Jenkins, Richman 1985b). It is developed from the expansion of Boltzmann 

equation for a nearly elastic system and has already shown promise for steady state cases 

(Viswanathan, Wildman et al. 2006).  

The constitutive relationships for the bulk and shear viscosities are given by 

         (3.6) 

and 

.       (3.7) 

The heat flux, , is given by  with the thermal conductivity  as   

.      (3.8) 

The dissipation is given by  

    (3.9) 

where the first term on the right hand side is the energy dissipation rate due to particle-

particle losses and the second term corresponds to pressure work and viscous heating. 

The second formulation is based on the work of Garzo and Dufty. This presents 

constitutive relations that are more accurate and able to describe granular systems over all 

coefficients of restitution. However, it has not been rigorously tested and has yet to be 

considered within a time varying system. Based on the revised Enskog approach (see 

Chapter 2) it proposes corrections for the transport relationships at Navier-Stokes order 

with additional terms appearing for inelasticity and kinetic transfer. In the dilute limit these 

relationships agree well with Jenkins' formulation. The constitutive relationships and 
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coefficients as developed by Garzo and Dufty (Garzo, Dufty 1999) are reproduced below. 

The transport coefficients are reduced by and  given by, 

          (3.10) 

         (3.11) 

          (3.12) 

          (3.13) 

where  and  are the dilute limit values of thermal conductivity and 

shear viscosity respectively. While the cooling rate  is reduced as  where  

is the characteristic collision frequency given by 

.          (3.14) 

The bulk and shear viscosity coefficients are given by 

       (3.15) 

and 

       (3.16) 

where the kinetic parts,  are given by 

      (3.17) 

with 

      (3.18) 

      (3.19) 
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and 

    (3.20) 

In this derivation, the heat equation also includes a density gradient term, such that 

. The constitutive coefficients for the  are given by 

    (3.21) 

where is given by  

  (3.22) 

and are given by 

,         (3.23) 

     (3.24) 

The inelastic transport coefficient is given by 

        (3.25) 

where the kinetic part is the given by 

  (3.26) 

where  is given by .The dissipation term is given by  

     (3.27) 

where , and  is given by 

    (3.28) 



 

53 
 

and is given by 

    (3.29) 

where is given by 

 (3.30) 

3.4. Boundary conditions 

The steady state and time dependent models employ different ways of treating the base 

boundary conditions due to the inbuilt nature of the two models. In our initial testing of the 

model using a steady state formulation, we use an effective time independent heat flux 

while the heat flux and momentum for the time dependent model are introduced separately 

in the next chapter. The boundary conditions for the steady state case are as follows. 

The axial symmetry of the problem (Fig. 3.1) allows the gradients of the temperature and 

of the components of the mean velocity fields to be specified: 
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where u and v are the radial and vertical components of velocity vector The base of the 

cell provides the energy input to the system however the inertial effect of the base is 

negligible over the course of a complete cycle. The validity of this assumption will be 

revisited in chapter 4 and 5 where we consider time-dependent simulations of this system. 

For steady state system one can describe the heat flux description at the base in the limit of 

flat wall by (Richman 1993) 

    (3.34) 
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where  is the root mean squared velocity of the vibrating base and  is the coefficient 

of restitution between grain and the base. In order to support total number of grains Ng in 

the cell base pressure  is specified as    

                  (3.35) 

The sidewall is treated in similar fashion to the base, such that 

                                 (3.36) 

where  is the out of plane root mean squared velocity component of the wall. The 

quantity  represents the particle-wall coefficients of restitution.  is the pressure, 

p, at the side wall calculated through Eq. 3.4. 

At the top boundary the heat flux is set to zero,  

          (3.37) 

The base, side wall and upper boundaries are considered impenetrable and we use non-slip 

boundary conditions to specify the condition: 

           (3.38) 

 

Figure 3-1: Axi-symmetric domain of vibrated granular bed. 
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3.5. Numerical solution and mesh independence 

The solution of these Navier-Stokes-like equations requires techniques that are similar to 

those used for conventional fluids, but the boundary conditions leave profound effects not 

only on the stability of solution technique but the solution itself. This is the characteristic 

of granular flows as injection of heat and momentum through boundaries are critically 

important for the establishment of flow and usually evolve as a part of the solution. The 

coefficients of the constitutive relationships are functions of state variables such as density 

and temperature as in case of conventional fluids, but as the number density increases the 

dense gas effects are introduced through diverging form of radial distribution function 

which causes problem in attaining stability under very high packing fractions.  

The finite element method has recently been used in granular flows with reasonable 

accuracy for instance (Viswanathan, Wildman et al. 2006). On the other hand finite 

difference scheme faced instabilities in convergence and implementation of heat flux at the 

base boundary poses problems which affects the bulk physics (Huntley, Martin et al. 

2007). Here we employ a finite element package for steady state as well as time varying 

granular physics simulations.  

In our system, the mass and momentum conservation equations (Eq. 3.1) and (Eq. 3.2) are 

implemented in the ‗Non-Isothermal mode‘ of the Chemical Engineering-Momentum 

balance module, a supplementary module in COMSOL designed to facilitate the solution 

of heat and mass transfer problems. The energy equation (Eq. 3.3) is implemented in the 

‗Convection and Conduction mode‘ of the Chemical Engineering-Energy balance module 

with the equation of state (Eq. 3.4) implemented as an algebraic equation using the 

coefficient form of the user defined partial differential equation PDE module. We 

considered a cylindrical domain of radius R and height L shown in Fig. 3.1, containing Ng 

particles each with a diameter d and mass m. The granular bed is fluidized by a vertically 

vibrating the base of the system sinusoidally at an angular frequency  and amplitude a0. 

In our simulations we chose input parameters designed to match the details of experiments 

using PEPT (Wildman, Martin et al. 2005) detailed in Section 3.6.  

The model is solved using different mesh densities varying through (a) 800 elements,10 

boundary elements (b)1800 elements, 20 boundary elements, (c) 2500 elements, 25 

boundary elements, and (d) 3300 elements, 30 boundary elements. It was observed that the 

numerical error was small (< 3%) with mesh quality changing from (a) to (b) and less than 
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1% from (c) to (d) and mesh quality (c) was selected for our computational domain. In 

comparison with experimental data the percentage error observed in the numerical solution 

was found reasonably small. However even with the mesh quality (d) the boundary layers 

near the side wall and base were not completely resolved. This requires significantly higher 

mesh densities in the close vicinity of the boundaries and was not performed due to the 

limited computational resources. For solution, a nonlinear solver is used based on the 

generalized mean residual (GMRES) solver and incomplete LU pre-conditioner with a 

drop tolerance of 10
-6

. We used the ‗Elimination‘ constraint handling method and 

‗Orthonormal‘ null-space function to obtain the solution.  

3.6. Validation of Steady state hydrodynamic model with constitutive 

relationships  

The hydrodynamic model and the two sets of constitutive relationships are compared with 

the experimental data obtained using PEPT and the hydrodynamic simulations of 

Viswanathan et al (Viswanathan, Wildman et al. 2006) in the limit of steady state case. 

Here a summary of the experimental setup is included for the sake of reference. 

a. Experiments using Positron emission particle tracking  

The detail working of PEPT technique has already been introduced in Chapter 2. Here for 

comparison we take the case using 700 glass beads each of 5 mm diameter placed in a 140 

mm diameter polymethyl methacrylate (PMMA) container, of height 300 mm, fitted with a 

glass base. The coefficients of restitution were measured as 0.91 ± 0.02 for a glass-glass 

collision and 0.68 ± 0.04 for a glass-PMMA collision. The cylinder was attached to a Ling 

Dynamic Systems vibrator, which vibrated the system at a frequency of 50 Hz and 

amplitude of up to 1.54 mm with a sinusoidal waveform. In the system outlined here, 

PEPT typically locates the tracer particle up to 500 times per second, with an accuracy of 

1-2 mm when the particle is travelling at 1 ms
-1

. For further details on the setup and test 

procedures readers are referred to Wildman et al. (Wildman, Martin et al. 2005). 

b. Results and discussion 

Results are compared for Jenkins‘ (Jenkins, Richman 1985a) and Garzo‘s (Garzo, Dufty 

1999) models for root mean squared base velocity of  where is the non-

dimensional base velocity. Both constitutive formulations, here abbreviated to SSM-

Jenkins and SSM-Garzo for reference, are compared for the case of the dilute limit where 
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both models should produce similar results. Thus in Figs 3.2 and 3.3, a comparison of 

packing fraction and granular temperature show that both models compare reasonably well 

in the dilute regime with the experimental findings of PEPT (Wildman, Martin et al. 2005). 

In the case of SSM-Garzo, the granular temperature shows an increase in the region of the 

cell away from base (Fig. 3.3) and this is expected owing to the additional term appearing 

in the heat flux relationship relating density gradient, . The effect of this 

additional term is consistent with previous results of Martin (Martin, Huntley et al. 2005) 

using constitutive relationships proposed by Brey et al (Brey, Dufty et al. 1998). The 

convective rolls and velocity patterns show agreement amongst the two models and the 

experimental findings of PEPT as shown in  Fig 3.4. However due to limited 

computational resources the boundary layer near the side wall was not resolved 

completely. Still we can see from Fig. 3.2 and Fig 3.3 that below 5d there is good 

agreement between SSM-Garzo and SSM-Jenkins for the granular temperature. Above 5d 

we observe a difference in the temperature profiles that can be attributed to the second 

term in the heat flux. 

  

Figure 3-2: Packing fraction as a function of height for Steady state case at r* = 0.72 

Data curves are labelled according to their nomenclature as given in body text. 
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Figure 3-3: Granular temperature as a function of height for steady state case at r* = 

0.72 Data curves are labelled according to their nomenclature as given in the body 

text.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Velocity vectors in axi-symmetric case for the case of steady state model. 

(a) SSM-Jenkins, (b) experimental PEPT results and (c) SSM-Garzo. 
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SSM-Jenkins has been widely tested (Hrenya, Galvin et al. 2008, Wildman, Martin et al. 

2008, Martin, Huntley et al. 2005) and as a consequence is commonly used for describing 

dry granular flows, despite the restriction in its derivation to near elastic particles. The use 

of these models in high dissipation flows raises questions regarding its applicability as it 

finds its roots for near elastic systems only. While SSM-Garzo has better mathematical 

foundations for providing solutions for larger ranges of packing fraction and inelasticity. 

To our knowledge, SSM-Garzo is a first attempt to use the complete model for realizable 

dense inelastic systems. In comparison with the results against the established SSM-

Jenkins, it predicts the hydrodynamic behaviour reasonably well with the maximum 

difference between the predictions and experimental results lying within 15% for granular 

temperature predictions in major part of the cell particularly near the base ( ). SSM-

Garzo seems to predict slightly higher packing fraction near to the base in comparison with 

SSM-Jenkins, and the packing fraction decays slightly earlier at higher altitudes of the cell 

owing to mass conservation. Near the side wall both models predict increased packing 

fractions at a height corresponding to that of the eye of the convection (not shown), whilst 

the SSM-Garzo predicts increased packing fractions consistently (see Fig. 3.5). However, 

these differences lie within the acceptable limits.  

The presence of the eye of convection roll near the side wall is linked with the increased 

local density towards the side wall. Figure 3.5 shows the increased packing fractions near 

the wall at r* = 13.5 compared to packing fraction predictions at the axis, r* = 0. The 

increased region of local density means increased dissipation region leading to a reduction 

in the granular temperatures near the location of the eye of the convective roll. Both steady 

state models effectively indicate that the granular temperature fluctuations are strongly 

linked to the convective rolling (see Fig. 3.6). At r* = 13.5 SSM-Jenkins shows a decrease 

in the granular temperature to its minimum between  and the subsequent 

increase in temperature for . Otherwise a continuous decreasing trend is seen at the 

axis (r*= 0) for SSM-Jenkins. Similarly SSM-Garzo also shows lower minimum 

temperatures at r* =13.5 as compared to r* = 0. Although SSM-Jenkins shows a localized 

temperature upturn away from the base. The temperature inversion is characteristic of 

SSM-Garzo due to appearance of the density gradient term in the constitutive relationships, 

something not present in SSM-Jenkins. It should also be noted that the rolling only appears 

when an inelastic wall is used, and has been confirmed in both models. The inelasticity of 

the wall links the viscous effects in the momentum and energy equations through an 
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enhanced density concentration appearing near the wall, which does not occur when the 

particle-wall collisions are elastic.  

 

Figure 3-5: Packing fraction as a function of height at r* = 0 and 13.5 for n = 700 at 

. 
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Figure 3-6: Granular temperature as a function of height at r* = 13.5 for n = 700 at 

. 

3.7. Summary 

This chapter details the Navier-Stokes-like model for the steady state and time dependent 

granular motion in a vibrated axi-symmetric three dimensional granular bed. The model 

uses two types of constitutive formulations. Validation for the steady state case has been 

completed through comparison of the results for SSM-Garzo against those for SSM-

Jenkins and PEPT experimental data, and show that SSM-Garzo agrees well with SSM-

Jenkins model in the dilute regime. This agreement suggests that a time-dependent solution 

may be possible  and in the forthcoming chapters we will develop these models further to 

the time dependent case with different loading conditions and frequencies of excitation.  
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Chapter 4 Low frequency vibro fluidized granular beds 

4.1. Introduction 

Time dependent physics for granular flows, in the recent past, started to have been 

investigated (Bougie, Moon et al. 2002). Evidence of generation of waves during low 

frequency vibration has been reported in the MD simulations of Bougie (Bougie, Moon et 

al. 2002) and the experimental findings and one dimensional modelling using Jenkins' 

formulation (Huntley, Martin et al. 2007) have both demonstrated strong time varying 

fluctuations in the mean velocity and granular temperature over the course of a typical 

vibration cycle. Previous investigations at similar base velocities, packing fraction and 

excitation frequency have previously confirmed a range of phenomena, including the 

presence of a convective rolling in the cell (Sunthar 2001, Bougie, Moon et al. 2002, 

Rericha, Bizon et al. 2001, Khain, Meerson 2003). In this Chapter we propose to extend 

these studies to time-dependant problems using a Navier-Stokes order axi-symmetric 

description. In particular we will look at the effect of radial variations on the dynamic 

nature of the cell during low frequency of excitation, thereby investigating a possible link 

between the steady state features (convection) and time varying effects (travelling waves). 

In this chapter we extend our analysis to include time dependent and phase resolved 

predictions of spatial variations of the temperature and velocity fields in a vibrofluidized 

granular bed. By simulating the model for the axi-symmetric geometry, it is possible to 

observe the transport of mass, momentum and granular temperature in both the axial and 

the radial directions as function of time. 

In this chapter the time dependent hydrodynamic model introduced in Chapter 3 is solved. 

This chapter details the time varying treatment of vibrating boundary conditions, the 

solution procedure and the results for a granular bed vibrated at low frequencies. The 

results for the both constitutive formulations described in Chapter 3 are compared with the 

time varying behaviour of a dry granular flow in a vibrated bed obtained using molecular 

dynamics simulations and experimental results (Huntley, Martin et al. 2007). A summary 

of the experimental setup of the NMR apparatus is also included in this chapter for the sake 

of completeness. 
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4.2. Solving time dependent model 

Here we solve both formulations introduced in Chapter 3 for the time varying case. In 

order to confirm the predictions of the models, hereby referred as ATD-Jenkins and ATD-

Garzo, results are compared against phase-resolved findings of NMR experiments 

(Huntley, Martin et al. 2007) and hard sphere molecular dynamics simulations. All 

time/phase-resolved simulations are carried out for a total of 110 particles with mean 

diameter d = 2.04 mm with a  base vibration frequency of 38.2 Hz, as per the parameters 

used in the experiments. The non-dimensional internal radius ( ) of the domain 

was set as 4.4117 to match the cell in the experiments. Details of boundary conditions and 

solution checks for time dependent case are included in the following sections. 

a. Boundary conditions for the time dependent model 

Our time dependent model uses an axi-symmetric domain similar to that shown in Fig. 3.1, 

with the relevant boundaries as labelled. In order to obtain a complete description of the 

system thermal and momentum boundary conditions are required at each of the four edges 

of the system. 

We solve the hydrodynamic model in the frame of the shaking cell which results in an 

additional momentum term in Eq. 3.1 of the form of  (Huntley, Martin et al. 

2007) where a0 is the amplitude and is the frequency of the base. By solving in the frame 

of the shaking cell the base boundary effectively becomes motionless and is modelled as a 

static wall. For the heat flux at the base we adopt the relationship developed by Jenkins and 

Louge for static wall (Jenkins, Louge 1997), 

       (4.1) 

where  is the coefficient of restitution between particle and base and p is the pressure at 

base. The momentum boundary condition at the base is set to be a no-slip boundary as in 

the case of viscous fluids. The no-slip boundary condition eliminates all components of the 

velocity vector, such that . 

The top boundary of the domain is positioned high enough to avoid significant interaction 

of the granular material with the top whilst at the same time ensuring that the density does 

not fall so low that the continuum no longer exists. The continuum region limit is 
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calculated using the cut off packing fraction value based on the relationship  

(Martin, Huntley et al. 2005).  

The calculated height varies from 6.2d to 8d during the course of a cycle but for the sake of 

simplicity the higher value of 8d is used for all simulations. The boundary condition 

consisted of a zero heat flux . The momentum boundary condition at the top is 

taken as no-slip. Trial solutions were also made with stress-free boundary conditions but 

no discernable difference was observed. 

The side wall is modelled as a static, dissipative boundary. The heat flux due to the 

inelastic particle side wall collisions is then given by 

      (4.2) 

where  is the particle side wall coefficient of restitution.  

At the axis of the cylinder, the axial symmetry of the problem requires that the gradient of 

the temperature in the radial direction
r

zT



 ),0(
 is zero. 

b. Solver stability and necessary checks  

Previously developed one dimension phase resolved hydrodynamic model in Huntley et al 

(Huntley, Martin et al. 2007) faced problems due to the stability of numerical scheme and 

the highly non-linear nature of the model. Using finite element scheme to solve equations 

in non-conservative form helps this model by not requiring artificial/additional 

stabilization techniques at any stage of the solution in spite of the presence of nonlinearity 

and steep gradients in the domain (COMSOL 2007). A number of checks are employed to 

test the validity of the solution, which includes a) ensuring the number of particles (Ng) 

remained constant throughout the simulation at any time and b) checking that the net 

energy gain over a cycle is zero. The number of grains in the cell is calculate using 

         (4.3) 

where n is the number density and A is the cross-sectional area of cell.  
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Both conditions are plotted in Figs 4.1 and 4.2 to show the fluctuations in the integrated 

quantities, the number of grains and the domain energy integral. We can observe that the 

test quantities settle down quickly and the solutions acquires periodic steadiness after non-

dimensional time  

 

Figure 4-1: Number of grains Ng as a function of time for 110 grains vibrated at 38.2 

Hz. 

In the transient or time dependent problem a wave motion is a possibility. In order to 

ensure similarity with the experimental scenario, similarity parameter check of average 

speed of sound in the granular medium is also used. The speed of sound in a fluidized 

granular medium of spheres, in the dilute limit, can be calculated using 
3

5 *T
c   

(Huntley, Martin et al. 2007). The average speed based on the radially time averaged 

granular temperature is calculated as 1.17 and 1.21 for ATD-Jenkins and ATD-Garzo as 

compared to 1.1 observed in NMR experiments. 
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Figure 4-2: Integral of total energy E
*
as the function of time showing the fluctuations 

acquiring steady pattern. 

4.3. Testing the time dependent model  

Results for the time dependent models using ATD-Jenkins and ATD-Garzo are compared 

against both MD simulations and the results of experiments performed using NMR. Brief 

details of both MD simulations and NMR experiments are included for reference. 

a. Molecular dynamics simulations 

Here an event driven MD simulation is used which models particles as inelastic hard 

spheres where collisions are instantaneous and binary, details of which can be found in 

Section 2.2. To generate the initial configuration particles are inserted sequentially and 

randomly in the cylinder without overlap. A preliminary run was performed typically for 

10
6
 total number of collisions in order to allow the system to reach a stationary non 

equilibrium state. To generate hydrodynamic scale trends using the molecular dynamics 

code, a virtual grid is generated to find the localized variations of granular temperature and 

packing fractions in the domain. The locations of the grains' centres in their local grid cells 

are noted and associated properties are stored. The results are averaged over the predefined 

period of time and/or number of collisions, thus generating temperature and packing 
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fraction readouts at all required instances at all places with in the domain of cells. For 

steady state the averaging is carried out for the total duration of the simulation while when 

obtaining phase-resolved data the averaging time is discretised into phase angle. To 

produce meaningful results the simulation is run for 10
6
 collisions. 

b. Nuclear magnetic resonance imaging 

Detail on the NMR working and data acquisition can be found in Chapter 2. For our study, 

mustard seeds were used in a Bruker Biospin DMX 300 spectrometer operating at a 

frequency of 300.13 MHz (Huntley, Martin et al. 2007). The mean diameter of these grains 

was 2.04 mm with a 5.66 mg mass on average. The granular cell was machined from a 

permanently antistatic acetal co-polymer with a glass disc insert (thickness 1 mm) at the 

bottom. The bore of the NMR spectrometer constrained the external radius of cell and the 

effective internal diameter was 9 mm. The drive frequency was 38.2 Hz for the cell which 

was evacuated to reduce air drag on the grains. 110 grains (two monolayers at closed 

packed) of granular material (mustard seeds) were fluidized. Coefficients of restitution 

were measured using high-speed photography as follows: mustard–plastic, 0.60; mustard–

glass, 0.58; mustard–mustard, 0.68. In order to obtain phase resolution of granular 

temperature and packing fractions, the NMR signal excitation was triggered at a fixed 

phase of the sample vibration with twelve increments in the vibration phase to complete a 

vibration cycle. In order to improve signal to noise ratio eight datasets were averaged. The 

setup, forms of the NMR signal sequence and results can be found in Huntley et al. 

(Huntley, Martin et al. 2007).    

4.4. Results and discussion 

Figures 4.3, 4.4 and 4.5, 4.6 show the non-dimensional granular temperature field, and 

velocity field,  plotted for six parts of the cycle, with phase  = 

3
5&

3
4,,

3
2,

3
,0  for both the axi-symmetric time dependant models, ATD-

Jenkins and ATD-Garzo. These results demonstrate that in certain parts of the cycle, the 

radial variation is significant, something which cannot be captured in a one dimensional 

model. For example, at  in both models (Fig. 4.3 and 4.5), there is an increase in 

granular temperature at the axis, by a factor of ~1.4 over that observed at the wall. In 

addition there are significant temporal variations in the temperature field, not only in the 

axial direction, but also in the radial direction. A connection of base phase with the 

variation of cumulative granular temperature gradient in the radial direction is shown in 
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Fig. 4.7. The figure shows high temperature radial gradients at some of the phase locations 

of the base. These radial fluctuations are important since the energy loss at the wall is 

linked with the energy balance of the particles over the course of a cycle. In the axial 

direction both hydrodynamic models show wave propagation with a pulse of high 

temperature moving away from base. Additionally ATD-Garzo shows a rising granular 

temperature at large distances away from base. A detailed discussion on the heat wave 

movement and temperature variations in axial direction is included in the next section.  

The velocity field also shows interesting variations. Figure 4.4 and 4.6 show how the 

velocity field changes over the course of a cycle. It is evident that direction reversal occurs 

with the formation of a roll at similar phase locations for example, phase  where 

high radial gradients are also seen in granular temperature. The phase resolved velocity 

vectors show the presence of two dominant rolls at two points in time and location. One 

roll appears near to the base while the other appears higher in the cell. The presence of a 

roll and its direction can be correlated with the phase of the base. Figure 4.8 shows the 

variation of normalized mean Vorticity , , for the case of ATD-Jenkins and 

ATD-Garzo over the course of a typical base cycle. The normalization is made with peak 

angular velocity obtained using ATD-Jenkins. The highest and lowest points of the angular 

velocity indicate the points in the phase with strongest presence of rolling while the 

opposite gradients in the neighbourhood of both peaks show the opposite directions of 

rotation. The highest value indicates the roll formed away from the base while the second 

peak stands for the roll near the base.  

Interestingly, we see that the radial gradients in granular temperature are at their strongest 

at the same phase location points where the velocity circulation is greatest, for example at 

, suggesting a strong coupling between the heat flux and the convection rolls. 

Both ATD-Jenkins and ATD-Garzo demonstrate the generation and presence of the rolls in 

the domain (see Fig. 4.3 (a, e) and 4.4 (a, e)) but in ATD-Garzo the location of the rolling 

pattern is slightly lower (~ 1 particle diameter) compared to ATD-Jenkins.  
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Figure 4-3: Surface plots of non-dimensional granular temperature 
*T  for ATD-

Garzo during six stages of a vibration cycle starting from (a) to (f) at phase  = 

3
5&

3
4,,

3
2,

3
,0 

. 

Figure 4-4 Vector plots of velocity u for ATD-Garzo during six stages of a vibration 

cycle starting from (a) to (f) at phase   = 3
5&

3
4,,

3
2,

3
,0 
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Figure 4-5: Surface plots of non-dimensional granular temperature 
*T  for ATD-

Jenkins during six stages of a vibration cycle starting from (a) to (f) at phase  = 

3
5&

3
4,,

3
2,

3
,0 

.  

Figure 4-6: Vector plots of velocity u for ATD-Jenkins during six stages of a vibration 

cycle starting from (a) to (f) at phase   = 3
5&
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Figure 4-7: Radial cumulative temperature gradient variation during a typical cycle 

for the case of ATD-Jenkins and ATD-Garzo. 

 

Figure 4-8: Normalized peak angular velocity variation during a typical cycle for the 

case of ATD-Jenkins and ATD-Garzo. 
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a. Transport mechanisms and viscous effects 

During shaking, the particles leave the plate during a cycle when the maximum downwards 

acceleration of the plate is greater than gravity. When the layer is off the plate, it is cooled 

by inelastic collisions within the system and at the side wall, while the particles are 

simultaneously accelerated towards the plate by gravity leading to a large mean velocity. 

As the high velocity grains collide with the bottom plate a pressure pulse is formed. The 

development and propagation of this wave is attached to the cyclic motion of the base 

(Bougie, Moon et al. 2002).  

When the amplitude of vibration is small compared to the particle diameter, the transfer of 

heat through the granular medium is mainly through conduction and the momentum wave 

is diffused through bulk viscosity (Alain, Emmanuel et al. 2005). When the base amplitude 

is increased and becomes comparable to the mean particle size, then the fluctuations in 

energies of some of the particles will be high compared to the mean energy of the 

surroundings at a given height. Those high energy grains move up in the cell and cool 

down through collisions at heights higher than before causing an expansion of bed. This 

‗thermal expansion‘ generates instability in the system as it overcomes the stabilizing 

feature of thermal conductivity and bulk viscosity. The high temperature particles cool and 

move back downwards to hit the base with higher velocity generating a stronger pulse. 

Such an effect is amplified due to the fact that a dissipative wall provides radial gradients 

in flow domain. With the side wall dissipation contribution the fluid tends to self organize 

in a cyclic pattern (Khain, Meerson 2003, Ramirez, Risso et al. 2000).  

Transport through wave propagation and rolling motion, are both attributes of viscous 

effects which could only be observed in a complete hydrodynamic description when an 

appropriate Navier-Stokes order model is used in a three dimensional domain. In order to 

describe propagation of dynamic motion in the bed a time dependent model is required. 

Here the presented time dependent flow model allows slight allowance of compressibility 

in the flow as opposed to incompressible flow models developed previously (Viswanathan, 

Wildman et al. 2006, Martin, Huntley et al. 2005). For highly compressible flows even this 

formulation is inadequate and a transformation to conservative variables is required which 

is beyond the scope of this work and generally lesser applicable to granular physics. 

The propagating disturbances due to the base play a significant role in the process of heat 

transfer, as seen by Huntley et al (Huntley, Martin et al. 2007) where it was observed that 
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the viscous damping of propagating waves led to higher temperature regions at the top of 

fluidized cells. The transient nature of the flow can be seen more strongly by plotting the 

radial-averaged granular temperature as a function of altitude (Fig. 4.9). The results show 

reasonable qualitative and quantitative agreement, between each of the models, and 

between the hydrodynamic models and the MD simulation and experimental results. At 

large altitudes there is a significant discrepancy between ATD-Garzo and the other results, 

but this is due to the system becoming increasingly more Knudsen like as the altitude 

increases, which is not captured by ATD-Garzo. At lower altitudes most of the key features 

are captured. Importantly we see evidence that a temperature wave propagates through the 

cell. Both models predict an increase of granular temperature away from base. Such wave 

motion and increase of temperature is expected as shown by Huntley et al. (Huntley, 

Martin et al. 2007). It can be noticed that ATD-Garzo predicts a much higher increase of 

temperature in all the frames shown in Fig. 4.9 and this is predominantly because of 

additional packing fraction gradient term in heat flux ( ) along with the 

velocity variations especially during rolling contributing to the viscous component of the 

energy equation (Eq 3.9). This fact is discussed in the next section. 

 Figure 4-9: Radially-averaged granular temperature
*T showing the motion of the 

heat wave during 6 phases ((a) = 0 to (f) = 5π/3 in steps of π /3) of a vibration cycle. 
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b. Time averaged results 

The time averaged results for the granular temperature for MD simulations, hydrodynamics 

models and experimental results are shown in Fig. 4.10. It shows that in some parts of cell 

(~5d) both the hydrodynamic models capture the behaviour observed in the molecular 

dynamics simulations and experiments. The FE solutions qualitatively reproduce the 

behaviour at higher altitude seen in the 1-D numerical results presented in Huntley et al 

(Huntley, Martin et al. 2007) but this is not evident in the experimental results. Both ATD-

Garzo and ATD-Jenkins predict upturns of granular temperature with former showing 

significantly higher values, as would be expected due to the presence of the concentration 

gradient term in the heat flux. While the bulk behaviour show reasonable agreement with 

experimental results and MD simulations until ~5d above the base, after which ATD-

Garzo curve starts to significantly deviate from the other results. Temperature increases in 

MD simulations results can also be seen but they are not as significant as those observed in 

the ATD-Garzo solution.  

The upturn in time-averaged temperature predicted by both of the models (Fig. 4.10) 

requires investigation. It is expected with the ATD-Garzo model which includes an 

additional term related to the density gradient in the heat flux, along 

with conduction. In the last chapter we showed that this term results in generating 

temperature upturn for a steady state model (SSM-Garzo) leading to a substantial increase 

in granular temperature profile away from base with decreasing packing fraction. In SSM-

Jenkins such a behaviour is not observed (see Fig. 3.3 and 3.6), but the time varying model 

shows significant increase of temperature away from base. Previously it was related to the 

viscous damping of heat wave in the bed (Huntley, Martin et al. 2007). At some phase 

locations in Fig. 4.9, an increase of the temperature at large distances from base can also be 

seen in experimental results and MD simulations (see Fig. 4.9). The contribution of viscous 

effects in the energy equation (Eq. 3.3) is related through . Figure 4.10 shows an 

increase in its contribution in both models compared to the experimental results. Although 

qualitative predictions are similar in some parts of cell, quantitatively the ATD-Jenkins 

solution predicts significantly higher contribution than the ATD-Garzo method particular 

at heights of . In the presence of convection rolls the value of  would be 

greater than without its presence due to increased variations in both radial and longitudinal 

components and an increase of viscous contributions between in the ATD-

Garzo results can perhaps be linked to the regions of rolling (see Fig. 4.4 (a) near ). 



 

75 
 

On the other hand ATD-Jenkins predicts higher viscous activity in the region   due 

to location of a roll in the higher regions of the cell (see Fig. 4.6 (a)). A corresponding 

temperature increase can also be observed for ATD-Jenkins at similar height as anticipated 

(Fig. 4.10)  (Huntley, Martin et al. 2007).  

Although the viscous component contributes to the temperature upturn in both models but 

ATD-Garzo has an additional contribution due to packing fraction gradient ( ) term in 

the energy equation. Here the packing fraction gradient term together with the viscous 

contributions produces the resultant temperature profile higher for ATD-Garzo as 

compared to ATD-Jenkins at . The MD simulations also show a small temperature 

upturn, of degree more similar to ATD-Jenkins that ATD-Garzo, but again the relative 

diluteness of the upper regions of the cell make conclusive comparisons difficult in these 

regions.  

 

Figure 4-10: Radially time-averaged (over one cycle) granular temperature variations 

for ATD-Jenkin and ATD-Garzo compared with NMR and MD results.  
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Figure 4-11: Plot of cycle-averaged square of velocity gradient for ATD-Jenkins and 

ATD-Garzo models with experimental results. 

4.5. Summary 

This chapter details the time dependent solution of the Navier-Stokes-like model for low 

frequency excited granular motion in a vibrated axi-symmetrical dry granular bed. Two 

models, ATD-Jenkins and ATD-Garzo, are solved using the FE method with two different 

closure forms. Both models have been used to describe the time averaged nature of a 

vibrofluidized bed, and compare reasonably well with MD and experimental results. We 

observed the appearance of strong rolling and wave propagation and showed a link 

between the cyclic increase in the granular temperature with the viscous effects. The 

hydrodynamic results especially for ATD-Garzo show a reasonable match with the MD 

simulations as a function of time. A qualitative matching behaviour is also seen with the 

experimental results. For time averaged behaviour hydrodynamic models and MD 

simulations show similar trends. An extension of this methodology to different loading and 

operating conditions is described in the following chapters. 
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Chapter 5 High frequency vibro fluidized granular beds 

5.1. Introduction 

In the last chapter we observed the behaviour of a granular bed fluidised with a low 

frequency excitation. The phase resolved dynamics of the granular flow revealed that the 

momentum and energy transport in the cell associates with the base phase. At higher 

frequencies of excitation one expects in the first instance, that the nature of bed will be 

similar to that observed in the steady state (Sunthar, Kumaran 2001, Soto, Mareschal et al. 

1999), since with near to ultrasonic frequency and low amplitudes the effect of base 

motion and its frequency can be assumed to be small (Sunthar 2001, Rericha, Bizon et al. 

2001). However, at these frequencies in the laboratory, the time scales of the vibration are 

close to the time scales associated with the collisions. This is potentially significant since 

steady state theoretical predictions of the heat flux at the vibrating base are independent of 

the frequency of vibration (Richman 1993). Therefore it is necessary to explore the validity 

of our modelling tools at high frequency and to propose methods to describe vibro-

fluidised beds operating at high frequency. In this chapter we aim to study the physics of 

granular bed at near to ultrasonic frequencies using a combination of experimental 

methods, hydrodynamics models and MD simulations. We will compare the predictions of 

hydrodynamic models and with experimental observations and test the assumptions used 

for developing the models using soft sphere MD simulations.  

5.2. Nuclear Magnetic Resonance Experimental Setup  

Experiments at high frequency (~11-17.5 kHz) with low amplitude (~10-100 μm) were 

carried out using an ultrasonic actuator placed within a NMR spectroscope. A brief detail 

on the experimental setup is included in following sections.  

a. Setup 

The testing rig consisted of an actuator with waveguide, amplifier (MF300 having range 

from 1 kHz to 100 kHz), signal generator (Farnell Function Generator FG1) and the 

granular cell. The ultra-sonic actuator was used to fluidise a bed of mustard seeds (details 

given below) at a range of frequencies and amplitudes. The setup used in the tests is shown 

in the Fig. 5.1. The velocity of the base was monitored using a laser vibrometer (Polytech 

OFV512 class two fibre interferometer). The laser from the vibrometer was directed down 

through the top of the granular cell whilst in the NMR spectroscope using the mirror 



 

78 
 

positioned at the top. The reflected beam returning from the cell bottom surface was then 

directed back to the vibrometer through the same mirror (Fig. 5.2). Figure 5.2 shows the 

sonotrode/horn with the waveguide and CAD model for the setup used with the NMR 

spectroscope. The upper part of the waveguide with the cell on top is inserted into the 

spectroscope bore, while the rest rested on the base (Fig. 5.1). The external diameter of the 

granular cell was limited due to the size of the bore in the spectroscope, and thus a cell of 7 

mm in radius was used. The cell was machined from Polyether ether ketone (PEEK) 

material, which avoided the generation of any interference with the magnetic field of the 

spectroscope, whilst creating a cell with high stiffness and coefficient of restitution.   

 

Figure 5-1: NMR setup at Cambridge university. 
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Figure 5-2: Left, Actual Sonotrode with exponential profile. Right, CAD model of the 

actuator assembly with wave guides and vibrating cell.  

 

Table 5-1: Summary of experimental runs conducted. 

Sr. Base Frequency (kHz) Peak to peak Base velocity 

(m s
-1

) 

No. of seeds 

1 11.11 1.0 40 

2 17.68 1.0 40 

3 11.11 0.5 40 

4 11.11 0.74 40 

5 11.11 0.33 40 

6 20.2 0.74 20 

7 17.68 0.74 20 

8 11.11 0.74 20 

9 20.2 0.74 10 

10 17.68 0.74 10 

11 11.11 0.74 60 

12 11.11 0.74 80 
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b. NMR spectroscope 

For most NMR acquisitions, a liquid phase within the sample/granular material is the 

source for signal generation, and for this experimental study, mustard seeds were used in a 

Bruker Biospin DMX 300 spectrometer operating at a 
1
H frequency of 300.13 MHz. The 

time averaged signal for the mean velocity was measured using a specially designed spin 

echo pulse signal (Huntley et al. 2007). A 25mm 
1
H birdcage resonator was used to excite 

and detect the magnetization from the mustard seeds with the pulse length of 32 ms. The 

total echo time, TE, was 2.46 ms. Eight scans, at a recycle time of 365 ms, were averaged 

to obtain a sufficient signal-to-noise ratio. The acquired raw data were zero filled to 256 

data points in the velocity encode dimension, and then a two-dimensional Fourier 

transform was applied to give spatially encoded, velocity profiles, denoted here by S ( , z). 

These parameters enable determination of velocities within a range -0.85 to 0.85 m s
-1

 and 

with a resolution of 0.007 m s
-1

. Only the vertical velocity component (v) was measured 

since the granular temperature is normally highest in this direction, and the measured 

signal was integrated through the thickness of the cell to get radially averaged 

distributions. At this time, obtaining the velocity fluctuations in all directions 

simultaneously is not possible, but in future developments in this field it may become 

feasible. The field of view in the z-direction was  40.0 mm and the number of data points 

acquired were 128, giving an axial pixel resolution of 312 µm/pixel.  

c. Granular material specifications 

Mustard seeds were used in all the experiments. These had a mean diameter of d = 2.3 ±0.2 

mm and an average mass of 6.47 mg. A typical layer of mustard seeds consisted of 40 

grains. The coefficients of restitution were measured using high speed photography, from 

which we identified average values of 0.66 ± 0.09 for grain-grain collisions, 0.74 ± 0.08 

for grain-side wall collisions and 0.7 ± 0.07 for grain-base collisions.  

d. Limitations 

One limitation arises because of the finite time taken by the NMR spectrometer to non-

intrusively probe the granular dynamics. At ultrasonic frequencies, the NMR data 

acquisition time is of the order of the time period of the base, and thus phase resolved 

observation was not possible. As a consequence, only time averaged data was acquired for 

these experiments.  
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The strength of the ultrasonic actuation and height of fluidization decreased with an 

increase of the number of layers. As would be expected, bed height reduced significantly 

as the number of seeds were increased from 20 to 80 (one layer of beads = 40 particles) 

and above this number, fluidization was no longer observed: this set an upper limit for our 

experiments. With less than 20 seeds, signal to noise ratio was not high enough to achieve 

adequate spatial resolution and thus, experiments were limited to no fewer than 20 

particles. 

The ultrasonic actuator was designed to excite at 20 kHz, but a range of frequencies was 

explored. Other modes were found giving a range of resonating frequencies from 11.11 

kHz to 26.5 kHz with an achievable peak velocity of 0.91m/s.  

 

Figure 5-3: Variation of peak to peak base velocity, U, as function of input voltage 

signal, V, from signal generator. 

The majority of the resonating frequencies show consistent linearly varying peak base 

velocities with input voltage, up to a peak velocity of 0.74 ms
-1

 (Fig. 5.3). Thus all runs 

were carried out within this base velocity envelope to ensure linearity and control of input 

parameters. The base frequencies, loading conditions and velocity amplitudes used for 

experiments are shown in the table 5.1.  
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e. Preliminary results 

Runs with different numbers of grains at different frequencies and base velocities were 

carried out (see table 5.1 for details). Figure 5.4 shows the velocity distributions as a 

function of height for 3 cases. Previous investigations have shown that a Gaussian 

distribution is a reasonable estimate of the velocity distributions for bulk granular 

behaviour (Huntley, Martin et al. 2007). Therefore, we proceed similarly and the results 

are post-processed by fitting a Gaussian distribution at each vertical data location and 

determining the mean velocity and the granular temperature from the first and second 

moments.  

Case 4: 11.11 kHz 40seeds 0.74 m/s            Case 3: 11.11 kHz 40seeds 0.5m/s 

  

Case 10: 17.68kHz 10seeds 0.74m/s 

 

Figure 5-4: Vertical component of mean velocity along the axial direction for three 

cases as labelled. 

An initial inspection of the data shown in Fig. 5.4 shows that near to the base the mean 

velocity is negative. This is unexpected, but is a result of the finite integration time of the 

NMR spectroscope and the high instantaneous velocities of the particles near to the base 
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(Huntley, Martin et al. 2007). It is suspected that the mean collision time near the base is of 

the order of scanning duration of NMR. Thus the data acquired in this region cannot be 

regarded as reliable as in other parts of the cell 

However moving away from base the mean velocity of the distributions starts to move 

towards zero. To give an idea of the behaviour of the distributions as we move away from 

the base, Fig. 5.5 shows the typical velocity distributions at three heights with fitted 

Gaussian distributions. The fitted distributions are rather good considering the nature of the 

flow, but some deviations are seen in the tail regions particular for the distribution closest 

to the base (z = 4 mm). The higher velocity population at the positive end of the velocity 

distribution is expected due to the presence of a few high energy particles that have just 

recently collided with the base and are moving away. In general the approaching particles 

have mean velocity and temperature different from the mean velocity and temperature of 

particles leaving base and use of a bimodal distribution is suggested in this region. 

However away from the base for instance at z = 8 and 16 mm the velocity distribution is 

very close to a Gaussian distribution. 

 

Figure 5-5: Experimental results for  for case 4 with fitted Gaussian at z = 4mm, 

8mm and 16mm. 
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Figure 5-6: Time-averaged packing fraction for the same base velocities (0.74 m/s) for 

80, 60 and 40 grains. 

Apart from providing velocity distributions NMR also gives the profile for packing 

fraction along the height. The integral of intensity, S, of the signal is proportional to the 

packing fraction, and knowing the number of grains used in the experiment enables 

packing fraction profile to be obtained (Fig. 5.6). In the following sections we will discuss 

the behaviour of the distributions as a function of the experimental parameters, but first we 

will discuss the details of the inputs and operations of the MD simulations and 

hydrodynamic models. 

5.3. MD simulations 

In this chapter both event driven hard sphere as well as soft sphere MD simulations are 

employed to see the effects of high frequency agitation and test the assumption of binary 

and instantaneous collisions. A summary of input parameters and important details of both 

the hard sphere and soft sphere MD simulations relevant to the work presented in this 

chapter follows. 
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a. MD simulations-Hard Sphere  

We follow the procedure for generating event driven MD simulations described in Section 

2.2. The ensemble averaged results for granular temperatures and packing fractions are 

obtained using the recorded history of each of the grain during the course of the simulation. 

Experimentally determined (Section 5.2 c) mean values of coefficients of restitutions were 

used as an input into the hard sphere based MD simulations. To generate an initial 

configuration, particles were inserted sequentially and randomly in the cylinder without 

overlap. A preliminary run was performed typically for 10
6
 total collisions in order to 

allow the system to reach the stationary non equilibrium state. The collision rule and data 

acquisition details can be found in Chapter 2 and 4. 

b. MD simulations-Soft Sphere  

The soft sphere code is based upon the normal force law developed by Kuwabara and 

Kono (Kuwabara, Kono 1987) as given by 

        (5.1) 

where  is the contact force between colliding bodies and  is the deformation produced 

during collision (Kuwabara, Kono 1987). The input parameters for the soft sphere model 

includes the grain stiffness  and damping coefficient . Mean values for the coefficient, 

, were calculated for mustard seeds using a low force compression test based on the 

Hertzian contact law (Johnson. 1987), 

.          (5.2) 

The compressive tests used anvils made of PEEK material in order to replicate grain-base 

interaction. The damping coefficient , was calculated using Eq. 5.1 constrained against 

the condition of the coefficient of restitution. The equation solves for the value of for 

the collision of two identical grains having approach and return relative velocities equal to 

the observed mean velocities in the experimental cell. The force law of Eq. 5.1 calculated 

the force which resulted in an effective coefficient of restitution while the damping 

coefficient was varied in order to obtain convergence at the fixed time-step of 1x10
-7 

s that 

was used in all the soft sphere simulations discussed in this thesis. The resulting 

coefficients for all collision types (grain-grain, grain-base and grain-sidewall) are 

presented in table 5.2. A feature of this treatment of the collision dynamics is that the 



 

86 
 

coefficient of restitution is velocity dependent. As an illustration the coefficient of 

restitution for grain-base collisions is plotted for various incident relative speeds in Fig. 

5.7. 

Table 5-2: Summary of force law coefficients. 

Collision e  (N m
-3/2

)  

Grain-Grain 0.66 5.60e6 25 

Grain-Wall 0.74 1.45e7 48 

Grain-Base 0.70 1.47e7 58 

5.4. Hydrodynamic simulations 

Both the steady state hydrodynamic model (Chapter 3) and the time varying hydrodynamic 

model (Chapter 4) are employed here to simulate the high frequency excited bed, using 

appropriate respective boundary conditions with the two constitutive relationships 

summarized in Chapter 3. Initially hydrodynamic results are verified against the hard 

sphere based MD simulations. This is followed by comparison against the results of soft 

sphere MD simulations and experiment. 

 

Figure 5-7: Variation of grain-base coefficient of restitution, eb, as function of incident 

relative velocity, u. 
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5.5. Results 

a. Comparison of ED MD simulations and hydrodynamic models 

Initially we compare results for the average temperature profile predicted by hydrodynamic 

models with those predicted by event driven MD simulations. Both hydrodynamic models 

and event driven MD simulations employ the same assumption of binary instantaneous 

collisions that are a consequence of hard spheres. In order to validate the time dependent 

hydrodynamic models we make comparisons against the results of both the steady state 

model (SSH-Jenkins) and MD simulations and results, integrated over the cell radius, are 

presented in Fig. 5.8, 5.9 and 5.10 for the case of 80, 60 and 40 grains respectively, at an 

11.1 kHz base frequency. The packing fractions for all three cases are compared in Fig. 

5.11.  

 

Figure 5-8: Variation of time averaged/steady state granular temperatures (T*) as the 

function of non-dimensional height (z*) for the case of 80 grains at 11.11 kHz.  

It is evident that the time dependent model shows reasonable agreement in estimating the 

granular temperature in all the three cases. In all the cases ATD-Garzo predicts a lower 

minimum temperature and higher temperature upturn when compared to the SSH-Garzo. 
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Jenkins and ATD-Jenkins show good agreement with MD simulations in all the cases. 

Slight discrepancies between the time varying models and steady state models are expected 

as the results for time-dependent model results are time averaged as opposed to steady state 

results for SSH. We anticipate that ATD-Garzo would predict a higher temperature upturn 

compared to SSH-Garzo due to a combination of density gradient term and viscous activity 

in the bulk (see Chapter 4 for details).  

b. Comparison of the predictions of soft sphere MD simulations, 

experimental results and hydrodynamic models 

Figure 5.12-5.14 show the granular temperature profiles for time dependent and steady 

state hard sphere based models, SSM-Jenkins and ATD-Jenkins, in comparison with soft 

sphere MD simulations and experimental findings. Significant discrepancies in the 

granular temperatures profiles can be observed amongst the experimental findings and 

hydrodynamic results in all the cases. It is evident that the predictions of the soft sphere 

MD simulations and the experimental results are close for , while the hard sphere 

based hydrodynamic models on the other hand show substantially higher granular 

temperature profiles in this region.  

At 11.1 kHz the time period associated with the base vibration is of the order of the 10
-5

 s. 

The typical contact duration for two colliding spheres made of similar mechanical 

properties to mustard grains is 66 µs (Johnson 1987). The apparent lack of separation in 

these timescales suggests that the assumption of binary instantaneous collisions at the base 

may not hold at these vibration frequencies.  
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Figure 5-9: Variation of time averaged/steady state granular temperature (T*) as the 

function of non-dimensional height (z*) for the case of 60 grains at 11.11 kHz.  

 

Figure 5-10: Variation of time averaged/steady state granular temperature (T*) as 

the function of non-dimensional height (z*) for the case of 40 grains at 11.11 kHz.  
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Figure 5-11: Comparison of time averaged packing fraction (η) as the function of 

non-dimensional height (z*) for the case of 80, 60 and 40 grains at 11.11 kHz. (a) 

ATD-Garzo, (b) ATD-Jenkins and (c) Experimental-NMR. 

 

Figure 5-12: Granular temperature (T*) as the function of non-dimensional height 

(z*) for the case of 80 grains at 11.11 kHz compared against NMR and MD soft 

sphere results.  
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Figure 5-13: Granular temperatures (T*) as the function of non-dimensional height 

(z*) for the case of 60 grains at 11.11 kHz compared against NMR and MD soft 

sphere results.  

 

Figure 5-14: Granular temperatures (T*) as the function of non-dimensional height 

(z*) for the case of 40 grains at 11.11 kHz compared against NMR and MD soft 

sphere results.  
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5.6. Discussion 

a. Vibrating base-heat flux boundary condition  

The analytical foundation of the boundary conditions proposed and used in modelling 

granular beds has largely been developed on the argument of instantaneous binary 

collisions. Conditions for a steady state of heat flux and momentum balance have 

successfully been developed (Warr, Huntley 1995, Richman 1993, Jenkins, Louge 1997, 

Kumaran 1998) and implemented in hydrodynamic models (Viswanathan, Wildman et al. 

2006, Martin, Huntley et al. 2005). One particularly effective model used in a number of 

simulations was developed by Richman (Richman 1993) for bumpy walls and simplifies 

rather neatly for the limiting case of a flat smooth vibrating wall. The results from the 

Richman method should be directly comparable with Warr‘s findings (Warr, Huntley 

1995) in the limits of high frequency excitation. In this latter work, Warr and Huntley 

showed detailed calculations of the energy transfer from a vibrating boundary to a granular 

gas. From the mean change in velocity squared of the particles following a collision they 

numerically evaluated the energy transfer integral, Ie for a given base velocity magnitude. 

Ie was then related to the heat flux through (Martin, Huntley et al. 2005), 

        (5.3) 

where  is the base heat flux and To is the base temperature (Richman 1993). The Warr 

and the Richman methods of calculating the heat flux agree, particularly at lower base 

velocities and higher base granular temperatures (Martin, Huntley et al. 2005). Kumaran 

also proposed expressions for the base heat flux in vibrated beds (Kumaran 1998), 

resulting in the following expression for Ie, in non-dimensional form 

.       (5.4) 

Although this method is relatively easy to implement, it does allow for the possibility of 

energy extraction from the bed, and as a consequence we do not consider it in this work. 

As the base velocity increases, however, the predictions of the three base heat flux models 

start to grow. Figure 5.15 shows the calculation of the energy integral for each of the 

formulations. We see that at high temperatures (high base velocity), Warr model is 

comparable with Richman‘s calculations, but that at low base temperatures (low base 
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velocity) there are substantial discrepancies. Thus for all practical calculations in this work, 

we use the Richman boundary conditions only. However none of the above mentioned 

models predict the energy flux has a dependence on the frequency of excitation and only 

scale with the base velocity.  

This is important since the discrepancy between the predicted temperature profiles in Figs. 

5.12-5.14 suggests the assumptions of frequency independent, instantaneous collisions are 

not holding. One test of the base heat fluxes for realistic particles is to employ soft sphere 

MD simulations, keeping a constant base velocity (0.74 m/s), and to vary the frequency. 

The results of this test are shown in Fig. 5.16, where we plot the heat fluxes against the 

frequency and compare the predictions of the hydrodynamics and the soft-sphere 

simulation. The figure shows that, in all the loading situations, that the theoretical 

prediction of the heat flux generally agrees with that found in the soft-sphere simulation 

until frequencies of the order of 5 kHz are reached. At frequencies in excess of this, the 

heat flux determined from the simulations starts to decrease rapidly and reduces to zero at 

around ~20 kHz. As we have noted, at these high frequencies, the duration of collisions are 

of the same order as the period of oscillation, in which case the base starts to act more and 

more as a static plate, and the heat transferred to the particles drops off. Clearly, under 

these conditions, one can no longer rely on the assumptions and consequences of 

instantaneous and binary collisions. To demonstrate this, we show a typical trajectory of a 

particle in collision with the base for different base frequencies (Fig. 5.17). As the 

frequency is increased from 5k Hz to 50k Hz (a-c) the particle consumes more and more 

cycles of the base during its typical collision. This leads to the reduction of energy heat 

flux from the predicted values as the grains spend more time relative to the base 

consuming energy in localized deformations. With further increase in frequency the grain 

sees the base oscillating back and forth during a typical collision and the net transfer of 

momentum to the particle is near to zero. The consequence of this is that as we increase the 

frequency, we observe the particles become less and less fluidised (Fig. 5.17 and 5.4). 

Clearly, at near ultra-sonic frequencies, heat flux conditions such as those proposed by 

Richman are no longer appropriate and conditions that take into account the collision 

duration are required. 
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Figure 5-15: Non-dimensional heat flux energy integral (log scale) against granular 

temperature (T*) at non-dimensional base velocity (  = 1.74) for Richman (Richman 

1993), Warr (Warr, Huntley 1995) and Kumaran (Kumaran 1998). 

Interestingly Fig. 5-16 shows that there are deviations in the heat flux predictions from 

those predicted by Richman (Richman 1993) even at low frequencies (less than 5 kHz). 

The maximum difference between Richman and soft sphere simulation predictions lies 

within 5% for the cases of 20 and 40 grains. For 60 grains, it increases to 10% for 60 

grains and around 12% for 80 grains at an instant. We would perhaps expect the 

discrepancies to grow with the number of particles since the assumption of instantaneous, 

binary collisions will start to weaken as the collision frequency increases. 

In summary, we can see that the classical model for treating the heat flux at the base of a 

vibrating base is reasonable up to frequencies of the order of the 5 kHz (for our particular 

combination of material parameters), despite some discrepancies at low frequencies. At 

frequencies in excess of 5 kHz, consideration needs to be given on how to incorporate the 

effects of the collision duration into the predictions of heat flux. 
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Figure 5-16: Base heat flux, Qb, variation with frequency for hard sphere verses the 

soft sphere MD simulations at different loading conditions. 

 

Figure 5-17: Trajectory of a colliding particle with base profile at different base 

frequencies. 
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b. Bulk physics 

We saw in the previous section that there are important boundary effects due to the lack of 

separation between the collision duration and vibration timescales. In order to examine 

whether our proposed hydrodynamic model is able to capture bulk physics, it is necessary 

to control the heat flux at the base rather than leave it as part of the solution. To achieve 

matching of the heat fluxes at the bottom, we tuned the hydrodynamic heat flux at the base 

to that of the hard-sphere simulations. In addition, we modified the vibration amplitude of 

the base in the soft-sphere simulations to match these heat fluxes. In the case of the soft-

sphere MD simulations this was done by varying the peak velocity to 1.33 times the actual 

value of the base with vibrating frequency at 11.1 kHz. Figures 5.18 to 5.20 show that at 

same base heat fluxes the bulk physics is generally same as that predicted by 

hydrodynamic models and MD hard sphere simulations.  

 

Figure 5-18: At 40 grains, comparison of the granular temperatures at steady state 

for MD simulations (hard and soft spheres) and SSH(Jenkins). 

In the cases of 40 and 60 grains the bulk physics is well predicted by hydrodynamic model 

but there are discrepancies in the case of 80 grains. In hard sphere MD simulations and 
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damping coefficient as inputs, which allows the restitution coefficient to change with the 

velocity, as shown in Fig. 5.7. In the case of 80 grains, the mean velocity is expected to be 

lower than in the case of 40 grains which results in an increase in the coefficient of 

restitution in the bulk. This increase in coefficient of restitution will result in comparatively 

less dissipation per collision, and thus will result in a relatively higher temperature 

compared to that observed in a system with particles of fixed coefficient of restitution.  

These results suggest that at least for relatively dilute systems, that the despite the 

boundary conditions suffering from a lack of separation of timescales, the bulk behaviour 

is predicted by hard-sphere models beyond the 5 kHz vibration frequencies. 

 
Figure 5-19: At 60 grains, comparison of the granular temperatures at steady state 

for MD simulations (hard and soft spheres) and SSH(Jenkins). 
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Figure 5-20: At 80 grains, comparison of the granular temperatures at steady state 

for MD simulations (hard and soft spheres) and SSH(Jenkins). 

c. Effect of frequency on bulk physics 

Alongside base heat flux variation with frequency, it is also important to show how the 

variation of frequency of the base vibration affects the bulk granular temperature. In the 

previous chapter we examined in detail the behaviour of a granular bed at low frequencies 

while in the previous sections of this chapter we have considered the steady state physics 

of a granular bed at higher frequencies. At elevated frequencies, apart from grain-base 

interaction and associated reduction of heat flux, the bulk physics is reasonably well 

described by hard sphere based models, and we restrict ourselves to hard sphere 

simulations for these analyses. Here we consider a case of reasonably dense bed with 60 

grains. The rms base velocity amplitude is kept at  while frequency is varied 

from 55 Hz to 11 x 10
3
Hz using original theoretical heat flux boundary condition. 
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Figure 5-21: Granular temperature T* as a function of height z*, comparing ATD-

Jenkins and SSH-Jenkins against hard sphere MD simulations. N = 80 grains, with an 

rms base velocity of =1.17. The frequencies of vibration vary from 55 Hz to 11 kHz. 

In Fig 5.21 we compare the granular temperature profiles obtained from hard-sphere MD 

simulations against the predictions of ATD-Jenkins and SSH-Jenkins. We choose ATD-

Jenkins and SSH-Jenkins to highlight the bulk temperature behaviour with the upturn 

without the contributions of the density gradient term of ATD-Garzo. As one expects, the 

steady state predictions are independent of the frequency, but we can see from the time 

dependent simulations that there is a small dependence on frequency at low frequencies, 

but that importantly, the hard sphere simulations agree well with the time dependent 

hydrodynamic model. The MD simulation data is not sufficiently reliable at the highest 

altitudes to say with confidence whether the small upturn is observed in the system. This 

small increase in temperature near the top of the cell can be observed at all frequencies but 

because this occurs with close proximity of this phenomenon to the location of the limits of 

hydrodynamic applicability, probing this effect has proved difficult (the hydrodynamic 

limits decreases from  at 55 Hz to  at 11k Hz due to variation of mean 

temperature (Martin, Huntley et al. 2005)).  
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When vibration frequency of the base is decreased we see two effects. Firstly we see that 

the granular temperature of the particles near to the base goes down. Secondly, we see that 

the asymptotic temperature increases. These effects are somewhat expected, since as we 

have seen in the last chapter, at low frequency phenomena such as wave propagation can 

become prominent. This comparison underlines the importance of developing the axi-

symmetric time-varying model along with steady state models. At the other end of the 

frequency spectrum, we anticipate that a steady state model may be appropriate, since 

wave propagation may not feature strongly. 

5.7. Summary 

We have demonstrated that the frequency of vibration has a strong effect on the 

fluidization behaviour of granular gas under a range of loading conditions. At high 

frequencies, experimental observations and soft sphere MD simulations showed 

remarkably different granular temperature profiles when compared to hard sphere based 

hydrodynamic models and event driven MD simulations. It was identified that the lack of 

separation in timescales at the base led to a collapse in heat flux at high frequencies of 

vibration. When focussing on hard sphere models, we saw good agreement between them, 

but it was evident that at low frequencies, time dependent effects became important. 

Analysing the bulk behaviour independently from the boundary conditions showed that at 

high frequencies, hard sphere models were able to capture the behaviour well. In the next 

chapter we combine the two frequency regions by the introduction of low frequency signal 

with the high frequency to study the effect of low frequency changes to the high frequency 

stimulation has on the bed behaviour. 
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Chapter 6 The behavior of granular beds fluidized using a modulated 

vibration signal 

6.1. Introduction 

In the two previous chapters we considered both high and low frequency vibrations and 

their respective influences on the granular physics at similar base velocities. At low 

frequency the granular bed showed granular temperature variations with the phase of the 

base while at high frequency the bed attains a steady state feature, whilst at the same time a 

considerable and unexpected reduction in the base heat flux is seen.  The idea then arises 

that combining low frequency and high frequency base driving could enable us to observe 

both the time scales interacting in a single granular bed, giving rise to complex new 

phenomena. In this chapter we propose, therefore, to consider a granular gas driven by 

high frequency vibrations, modified through the application of a low frequency amplitude 

modulation.  

We use two forms of amplitude modulations. The high frequency signal is at 11.1 kHz 

while the modulating low frequency signal is of two types. The first type is a square wave 

whilst in the second case a sine wave form profile is used. The square wave modulation is 

studied using MD simulations with the results compared against phase resolved NMR 

experimental findings. Later we extend the analysis to a sinusoidal amplitude modulation 

signal using MD simulation and time dependent hydrodynamic model. For all MD 

simulation analysis in this chapter we use a soft sphere based model in order to include the 

effect of heat flux reduction at high frequency (see Section 5.6 for details).  

In this chapter we give a brief overview of the wave forms used in the analysis. We then go 

on to describe the experimental setup for NMR and the details of the MD simulations. 

Finally, we compare the experimental results to the predictions of the MD simulations.  

6.2. Vibration profiles 

The carrier signal is a high frequency vibration signal operating at 11.1 kHz modulated 

with a low frequency signal. The low frequency signal is of two types generating two 

resultant amplitude wave form sequences.  
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a. Square wave modulation 

The first sequence was obtained through amplitude modulation with a square wave at 20 

Hz using two levels of duty cycles resulting in two signals of the form as shown in Fig. 

6.1. The two duty cycle levels are at 20% and 40% respectively, generating signals with 

the higher amplitude for 20% (DC20) and 40% (DC40) part of the 20 Hz cycle and the rest 

at lower amplitude. A typical signal type is shown in Fig. 6.1 for the part of the signal 

where there is a transition from high amplitude to low amplitude. The ratio of high to low 

amplitudes of the two regions is kept at 50% with the maximum higher amplitude of 0.23 

m s
-1

(see Fig. 5.3 for base velocity and voltage signal relationship). This ratio of 50% is 

used to ensure sufficient ''jump'' in the base amplitude to influence the bed dynamics.  

 

Figure 6-1: Part of the modulated voltage, v, signal for 20 Hz signal and 40% duty 

cycle (‘DC40’) with carrier signal at 11.1 kHz showing the transition from high 

amplitude voltage to low amplitude voltage. 

b. Sinusoidal wave modulation 

The second form of modulated signal produces a sinusoidal base amplitude generating a 

signal of the form shown in Fig. 6.2. The 40 Hz low frequency sine wave signal allows a 

smooth transition from low to high amplitude and vice versa. This form of signal is useful 

0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025

-1

-0.5

0

0.5

1

t / sec

v
 /

 m
V



 

103 
 

to monitor smooth transitions in the bed. The maximum base amplitude of this signal is 

kept at 0.37 m s
-1

.  

 

Figure 6-2: Sinusoidal base amplitude, ao, signal for 40 Hz with carrier signal at 11.1 

kHz showing the transition from high amplitude to low amplitude with . 

6.3. Experimental setup using NMR 

The experimental system of NMR spectroscope, ultrasonic exciter and granular material 

specification are same as those described in Section 5.2. The main difference in these 

experiments is the phase resolved monitoring of granular cell at the low frequency cycle. 

In this case, the NMR spectroscope is triggered at parts of the cycle that allow the greatest 

insight into the changes in the bed behaviour. For the experimental work, we use only the 

square wave modulated signal. The cycle shown in Fig 6.1 has three important 

components: the high amplitude, transition from high to low amplitude and low amplitude 

part. Our interest is in observing the response of the granular bed just before transition, 

shortly after the change from high to low amplitude and then some time after the transition. 

To achieve this, the NMR spectroscope is triggered at the three times (TR1, TR2, TR3) 

given in Fig. 6.3. 
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Figure 6-3: Three observation points in a schematic 20 Hz cycle at DC40, TR1 near 

the tripping edge, TR2 after the edge and TR3 at 8.0 ms after TR2. 

These experiments are performed using 20 mustard seeds and we employ two different 

duty cycles, DC20 and DC40. To ensure that fluidisation was observed at the low 

amplitude, 20 grains were used in all the experiments. 

6.4. MD simulations 

Molecular dynamics simulations enable us to resolve the complete dynamics of the bed at 

all time scales. Here we only use soft sphere molecular dynamics simulations since we 

have shown in Chapter 5 that hard sphere MD has difficulty in describing base-particle 

interactions during high frequency driving. The characteristics of the grains such as mass, 

size, stiffness and damping coefficients as well as the granular cell dimensions, are the 

same as described in Chapter 5. For the signal modulated by a square wave 20 grains are 

used to match the experimental setup. 

In the case of the sinusoidal wave form, results are reported for 60 grains producing a 

dilute to moderately dense granular gas. We take the case of 60 grains in order to establish 

the regions of hydrodynamic applicability comparable for the hydrodynamic model. With 

60 grains the results produced in Chapter 5 showed a reasonable match between MD 

simulations and hydrodynamic models(see Figs. 5.9 and 5.21 for instance).  
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In both cases the system was initialized with a random distribution of particles ensuring 

non-interference between the grains within the simulation cell. In order to observe the 

dynamic effect progressing in a sequence, simulations were allowed to run at low 

amplitude until a steady state was achieved using 10
6
 total number of collisions. Thereafter 

the amplitude modulation was introduced. 

6.5. Results and discussion 

a. Square wave modulation 

The experimentally determined distribution of vertical velocities at the three triggering 

points shown in Fig. 6.3 at 20% and 40% duty cycle (DC20 and DC40) are shown in Figs. 

6.4 and 6.5 respectively. It can be noticed that the level of fluidization is significantly low. 

Apparently no major differences amongst the vertical velocity distributions are visible at 

the three observation points (TR1, TR2 and TR3). However a detailed comparison for the 

second moment of the velocity distribution is presented a little later in the section.  

The information relating the packing fraction profiles at TR1, TR2 and TR3 are determined 

by the method described in Section 5.2 and are shown in Fig. 6.6 and Fig. 6.7 for DC20 

and DC40 respectively. As one might anticipate, the greater duration of the high amplitude 

part of the duty cycle in DC40 compared to DC20 leads to a relatively expanded bed for 

DC40. Moreover Figs. 6.6 and 6.7 show expansion of the granular bed for both DC20 and 

DC40 from the 1
st
 monitoring point (TR1) to the 3

rd
 monitoring point (TR3). For both the 

cases the value of the highest packing fraction observed in MD simulations decreases from 

TR1 to TR3 with its location moving away from the base. Especially Fig. 6.7 shows that 

the results for packing fraction profiles match well with experimental trends at TR2 and 

TR3 for DC40. In spite of the fact that TR3 lies in the lower part of the amplitude 

modulation (see Fig. 6.3) we observe a slightly expanded granular bed at this point 

compared to TR1. This suggests that a lag exists between the bed response and the 

amplitude modulation. However experimental results show very little difference in the 

packing fraction profiles from TR1 to TR3 in both the cases.    
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The vertical velocity distributions of Fig. 6.4 and 6.5 are approximated with Gaussian 

distributions, using the method described in Section 5.2. For the case of DC20 and DC40, 

the comparison of granular temperatures at TR1, TR2 and TR3 are plotted in Figs. 6.8 and 

6.9 respectively. Although quantitative deviations can be observed amongst the predictions 

of granular temperatures, qualitatively the predictions are similar especially at TR2 and 

TR3 for both DC20 and DC40. In both cases MD simulations suggest an increase of mean 

granular temperature of the bed from TR1 to TR3. The increase of temperature from TR1 

to TR3 suggests a similar lagging trend in the gas behaviour as observed for the packing 

fraction profiles. With the increase of base amplitude during the duty cycle an expansion in 

the bed is likely to occur. However the heat transfer in the bulk does not occur 

instantaneously and a delay or lag is the collective bed response is expected. MD 

simulations show the expansion and contraction of the bed during the cycle while 

experimental results show little evidence of such expansion.  

  

TR1 TR2 

 

TR3 

Figure 6-4: Vertical velocity distributions for three observation points (TR1, TR2 and 

TR3) in 20 Hz cycle with 20% duty cycle square wave modulation, DC20. 
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TR1 TR2 

 

TR3 

Figure 6-5: Vertical velocity distributions for three observation points (TR1, TR2 and 

TR3) in 20 Hz cycle with 40% duty cycle square wave modulation, DC40. 
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Figure 6-6: Packing fraction profiles as function of non-dimensional vertical height 

for DC20 at TR1 (a), TR2 (b) and TR3 (c). 

 

 

Figure 6-7: Packing fraction profiles as a function of non-dimensional vertical height 

for DC40 at TR1 (a), TR2 (b) and TR3 (c). 
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Figure 6-8: Granular temperature profiles as a function of non-dimensional vertical 

height for DC20 at TR1 (a), TR2 (b) and TR3 (c). 

Figure 6-9: Granular temperature profiles as function of non-dimensional vertical 

height for DC40 at TR1 (a), TR2 (b) and TR3 (c). 
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With at least qualitative agreement between the experiment and the simulations, we can 

take advantage of the soft-sphere simulations to investigate the variation of bed dynamics 

over the course of a complete duty cycle. The total kinetic energy of the bed is shown in 

Fig. 6.10 with the schematic variation of amplitude of the driving vibration shown at the 

bottom for reference. For t < 0 the granular bed is allowed to achieve steady state at the 

peak base velocity of 0.115 m s
-1

. At t > 0 one can see clearly that the bed shows 

considerable variation throughout the modulated cycle with the total kinetic energy 

somewhat out of phase with the driving amplitude. The energy builds up in the system as 

the amplitude is increased for 40% of the 20 Hz cycle and then a drop leading to a cooling 

stage occurs after the amplitude is reduced to half. Similar behaviour continues for the 

following cycles as shown in Fig. 6.11.  

 

Figure 6-10: Total kinetic energy of the cell, Ek, at the introduction of modulated 

vibration signal for 20 grains at DC40. 
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Figure 6-11: Time varying fluctuations observed in total kinetic energy of vibrated 

bed for 20 grains at DC40. 

 
Figure 6-12: Fast Fourier transform of the total kinetic energy of vibrated bed for 20 

grains at DC40. 
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Since it is apparent from Fig. 6.11 that amplitude of the response of the bed varies with 

time, we performed a fast Fourier transform (FFT) on the data to determine the dominant 

frequencies. An FFT of a time series of the total kinetic energy of length 2 seconds and 

sampling interval 10
-5

 seconds was carried out. Figure 6.12 shows the single sided 

amplitude spectrum of the total kinetic energy. Above 100 Hz, we do not observe any 

significant features, and restrict the figure to the range 0 to 300 Hz. We observe a distinct 

peak at 19.67 Hz with additional low frequency peaks near 10 Hz. For DC40 the time 

duration for high amplitude signal is 0.05 sec (20 Hz) and the FFT spectrum shows a 

distinct peak in the region associated with this frequency. Interestingly no significant 

amplitude appeared for the high frequency carrier signal (11.1 kHz) of the base. As noted 

earlier (see Section 5.6), at this high frequency, the duration of collisions are of the same 

order as the period of base oscillation, in which case no wave like perturbation in the bulk 

can be transmitted at this frequency. 

i. Effect of frequency 

It is apparent that the high frequency component of the base does not influence the 

granular bed while the influence of the 20 Hz signal is visible in the frequency spectrum. 

The total kinetic energy of the bed (Fig. 6.11) shows a distinct peak every time it 

experiences the higher amplitude signal. As the system runs further (Fig. 6.11), slight 

fluctuations appear in the mean kinetic energy pattern. It is expected that the variations 

observed with time (cyclic lag) in the Fig. 6.10 may cause slight deviations in granular 

behaviour from one cycle to another especially if the lag is of the order of the duty cycle.  

A reasonable estimate of the time lag for the granular material in the limit of a near elastic 

dilute granular gas can be modelled by neglecting the energy loss through dissipation. The 

transient one dimensional heat transfer in the media can be modelled as, 

         (6.1) 

where  is the thermal conductivity of gas in the dilute limit (Chapman, Cowling 1991), 

          (6.2) 

Initially the gas is at a constant temperature with a dilute packing fraction profile given 

as, 
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          (6.3) 

At time t1 the base temperature is raised to T1, causing the spatial averaged total energy of 

the system ( ) to increase with time until the elastic gas acquires the uniform temperature 

T1. The variation of total energy of the system is shown in Fig. 6.13 (a) where the energy 

rise follows a trend of the form of  where 1/b is the time constant or lag time. An 

estimate of 1/b for a 70% increase in total energy at a unit temperature rise is 0.015 s for 

the case of a typical DC40 cycle.  

Table 6.1 shows the phase angles, computed from the Fourier coefficient at the dominating 

frequencies appearing in Fig. 6.12, indicating a phase lag of 2.55 rad at 20 Hz with respect 

to the phase of the driving signal. The phase lag is equivalent to 0.0219 s lag time for the 

case of DC40. It can also be noticed that the actual time lag for DC40 is slightly higher 

than the duty cycle of the excitation wave suggesting the possibility of the bed expansion 

even after the heat flux at the bed is varied. However the model for the estimation of lag 

time is a reasonable approximation given the highly inelastic nature of the granular flow. 

 

Figure 6-13: Theoretical energy increase in granular cell for a unit increase in 

temperature. 
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One may also anticipate low frequency effects such as wave propagation (see Chapter 4) to 

appear in the bed physics as the granular gas responds to the amplitude of the base. The 

generation of fluctuation pulse due to amplitude variation is seen at 20 Hz (see Fig. 6.11). 

The square wave modulation in particular carries a sudden change of amplitude due to the 

prescribed duty cycle. The sudden change might only act as a trigger for the kinetic energy 

fluctuation however the considered system is significantly dilute and difficult to track the 

localized variations. Therefore in the next section we study by MD simulations a relatively 

dense system excited by a traceable smooth amplitude transition at moderate base driving 

velocities. This enables us to track the localized hydrodynamic variations over the course 

of the low frequency cycle.  

b. Sinusoidal wave modulation 

The second form of amplitude modulation as introduced in Section 6.2 was modelled using 

soft sphere MD simulations. A total of 60 grains was used to obtain more than a single  

layer of grains at rest, and at an appropriate driving velocity this enables us to compare the 

predictions with the hydrodynamic models. Here results are presented for the total kinetic 

energy in the granular cell vibrated with a sinusoidal modulated signal. The fluctuations in 

the kinetic energy with time are seen in Fig. 6.14. In order to highlight the base phase the 

profile of the base amplitude is also shown in Fig. 6.14. It can be noticed that MD 

simulations show a slight lag similar to one observed in square wave modulation. This is 

particularly visible during the second wave shown in Fig. 6.14; MD simulations show a 

peak in total energy at a point where the base amplitude is significantly low in this region. 

If the long time behaviour of the kinetic energy is observed for MD simulations 

fluctuations and variations (see Fig. 6.15) reminiscent of those observed in Fig. 6.11 are 

seen. For comparison, a FFT of a trace of 2 seconds, 10
-5

 seconds interval was performed. 

The FFT of the energy fluctuations (Fig. 6.16) show peaks similar to those observed for the 

square wave modulation. Energy fluctuation for smooth transition signal shows signature 

of the forcing frequency in the form of a peak at 40 Hz.  
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Table 6-1: Phase angles of the vibrated bed at the dominating frequencies for 20 

grains for DC40 

Frequency / Hz Phase angle / rad 

10.3  -1.715 

20.1 2.55 

40.05 1.627 

 

 

Figure 6-14: Cyclic variation of total heat flux fluctuations for MD simulations. 
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Figure 6-15: Total heat flux fluctuations with time for sinusoidal wave form using 

MD simulations for 60 grains. 

Figure 6-16: FFT of the total kinetic energy of the bed for 60 grains with sinusoidal 

modulation. 
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The pattern of Fig. 6.14 shows a trend similar to the one seen in Fig. 6.10 for the square 

wave modulation. The total energy increases from its minimum to maximum value 

reaching its peak value with a lag compared to the duty cycle and then follows with a 

decreasing smooth profile. Interestingly, in Fig. 6.14 we see that after the total energy has 

reached a maximum and it decays towards the minimum, the higher frequency oscillations 

are diminished until the energy increases once more. 

i. Bulk behavior 

To analyze the behaviour of bulk in correspondence with the low frequency cycle, Fig. 

6.17 (c) shows the plots of granular temperature in vertical direction, , at 8 equally 

spaced phase locations of the cycle using MD simulations. The broken horizontal lines 

indicate the local reference for each phase location starting from the top. Plots of without 

modulation low frequency (at 40 Hz) and high frequency (at 11.1k Hz) excitations are also 

shown in Fig. 6.17 (a) and (b) respectively at the same rms base velocity of 1.71 with 

60 grains. The low frequency excitation (without modulation), Fig. 6.17 (a), shows a strong 

wave propagation in the bulk while the high frequency excitation indicates no notable 

fluctuation over the course of the base phase (Fig. 6.17 (b)). The modulated sinusoidal 

signal (Fig. 6.17 (c)) shows fluctuation of granular temperature on a pattern similar to Fig. 

6.17 (a) but with significantly lower amplitude.  

A reduction in the heat flux at the high frequencies of excitation is shown in Fig. 5.16 due 

to lack of separation of time scales between base motion and grain-base contact duration 

(see Section 5.6 for details). Since the carrier signal in the modulated wave is at a high 

frequency (11.1k Hz) this results in a overall reduction of heat flux. However the 

steadiness in the bed physics seen at high frequency (Fig. 6.17(b)) is disturbed due to the 

low frequency amplitude modulation cycle as seen in the fluctuation of granular 

temperature (see Fig. 6.17 (c)). 
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Figure 6-17: Phase resolved granular temperature as a function of height for (a) 40Hz 

excitation;  (b) 11.1k Hz excitation; (c) modulated sinusoidal wave with broken lines 

show the local reference. 

In the next step the rms heat flux at the base for modulated sinusoidal wave is increased to 

match the rms heat flux transmitted at low frequency vibration at 40 Hz. This enables us to 

compare the results with the hard sphere based time dependent hydrodynamic models 

(ATD-Garzo and ATD-Jenkins). By tuning the amplitude of vibration to 1.45 times , the 

resultant phase resolved vertical granular temperature is shown in Fig. 6.18 (c) along with 

ATD-Garzo results Fig. 6.18 (a) and ATD-Jenkins Fig. 6.18 (b). The sinusoidal 

modulation force is introduced in to momentum balance (Eq. 3.1) using the method 

described in Section 4.2 enabling the base boundary to be modelled as non-moving. Both 

ATD-Garzo and ATD-Jenkins indicate the generation and movement of similar wave 

motion as seen in Fig. 6.18 (c). MD simulations show qualitatively similar trends in the 

bulk as seen in ATD-Garzo and ATD-Jenkins. ATD-Garzo (Fig. 6.18(a)) predicts a 

considerably higher temperature upturn at all phase locations for z* > 4.0 compared to Fig. 

6.18 (c). A detailed discussion on the cause of larger upturn for ATD-Garzo can be found 

in Sections 3.6 and 4.4. Figure 6.17 (a) and 6.18 (c) are reproduced in Figure 6.19 for a 

direct comparison. Interestingly the behaviour shown in Fig. 6.19 (a) is qualitatively 

similar to Fig. 6.19 (b) in the sense that the generation of wave-like effect is seen with the 

low frequency component of the modulated signal. We anticipate some differences in the 
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granular temperature especially near the base (z* < 2) due to different patterns and nature 

of the waves. However the bulk behaviour (Fig. 6.19 (b)) shows the propagation of pulse 

over the course of the cycle similar to the one seen in Fig. 6.19 (a).   

 

Figure 6-18: Phase resolved granular temperature as a function of height for (a) 

ATD-Garzo; (b) ATD-Jenkins; (c) modulated sinusoidal wave at 1.45 times . 
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Figure 6-19: Phase resolved granular temperature as a function of height for (a) 40Hz 

excitation; (b) modulated sinusoidal wave at 1.45 times . 

6.6. Summary 

This chapter is focused on the combined effects of low and high frequency vibrations in a 

single bed. Although the signal is primarily at high frequency, the bed shows the effect of 

the low frequency modulating signal. In MD simulations the bed dynamics fluctuate due to 

the amplitude modulation in a cyclic fashion and generate wave-like patterns in the bed 

over the course of each cycle. However the strength of the wave is reduced due to the 

limited heat flux at the base. By tuning the heat flux at the base the results show wave 

propagation in a fashion similar to the non-modulated low-frequency case. Time-

dependent hydrodynamic models show a reasonable qualitative comparison to MD 

simulations results in the phase-resolved behaviour of the granular bed. It is expected that 

with the different types of modulation schemes, duty cycles, amplitude ratios and wave 

forms, further patterns in the bed will be observable. 
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Chapter 7 Scaling in granular flows 

7.1. Introduction 

In previous chapters we have shown hydrodynamic predictions for temporal and spatial 

variations of granular flows under different operating conditions and compared them with 

experimental results and MD simulations. Tests of two sets of constitutive relationships 

showed reasonable agreement, though with some deviations between the two descriptions. 

The hydrodynamic solutions generally capture key scaling relations that demonstrate the 

broad trends of behaviour that granular flows follow. Identification of important 

parameters and their scaling will not only help us in our understanding of flow physics but 

will also direct our modelling approaches. In granular flows some of the scalings can be 

obtained relatively simply through dimensional analysis (Turner, Woodcock 1990, 

Sunthar, Kumaran 1999), but those do not usually reflect higher order effects that might be 

present, and are unable to reveal any temporal or spatial correlations in the system.  

In this chapter we try to identify and test the scaling parameters that govern the behaviour 

of granular flow in a simplified system. We consider a case of a time independent vibrated 

bed with smooth nearly elastic hard spheres, shaken vertically in the presence of gravity. 

By neglecting the viscous effects the system is completely described with three constitutive 

relationships for thermal conductivity, dissipation and pressure. A key test will be made of 

recently proposed scaling relationships  (Kumaran, Wildman et al. unpublished), which in 

the asymptotic limits predict the scaling of state variables in a vibrated system. This 

simplified configuration of constitutive relationships reveals important correlations but still 

needs testing and validation.  

In this chapter we introduce the newly identified form of constitutive relationships along 

with the form of non-dimensionalisation. This is followed by validation of the model 

solved using finite element methods against the predictions of hard sphere MD 

simulations. Later the predicted correlations are tested using MD simulations in the limits 

identified by the non-dimensional parameters followed by discussion and conclusions. 

7.2. Steady state model 

The steady state configuration for one dimension, incompressible and inviscid system of 

granular particles in a vibrated bed in presence of gravity reduces to balances of 

momentum and energy, 
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           (7.1) 

          (7.2) 

where  can be expressed as constitutive relations for pressure, thermal 

conductivity and dissipation in a rescaled form. The idea is to recast the relationships for 

identical smooth spherical particles of unit mass in a form where they are functions of 

granular temperature and packing fraction ( ) only. The first step is to divide 

Eq. 7.1 and 7.2 by the particle mass m. Next we introduce the following re-scaled 

variables  and . For scale of notational 

convenience we now drop the primes and write . This yields 

           (7.3) 

          (7.4) 

The relationships for pressure, thermal conductivity and dissipation are given below, 

          (7.5 a) 

         (7.5 b) 

        (7.5 c) 

where  are functions of packing fraction, , granular temperature T and pair 

distribution function,  in non-dimensional form. For low to moderately dense system, the 

relationships for  as given below  

          (7.6) 

       (7.7) 
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          (7.8) 

with . 

In the dilute limit, the effect of the pair distribution function is reduced and  

are reduced to simple relationships. For further analysis in this chapter all the following 

relationships are scaled using the mass of particle and not shown for particles with unit 

mass.   

7.3. Definition of non-dimensional parameters 

a. Identification of length scales 

Apart from the particle diameter, other characteristic length scales can be identified in 

granular flows (Kumaran, Wildman et al. unpublished). In the limit of nearly elastic 

particles the dissipation term  is negligible. In such a case by solving Eq. 7.1 and 7.2, the 

leading order density in terms of number density per unit area N is given by 

.          (7.9) 

This shows that by assuming T as constant the density decreases with a length scale of 

. Figure 7.1 shows the decreasing profile of density in the limit of an elastic gas. 

The other length scale associated with the granular temperature can be obtained by 

comparing the conduction and dissipation terms in the heat balance (see Eq. 7.2) (Kumaran 

2000a). Conduction rate is proportional to  where  is the length at which the 

temperature varies, while the energy dissipation rate is proportional to . 

A balance between the two is achieved when . 
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Figure 7-1: Packing fraction profile for an elastic gas at constant temperature. 

b. Non-dimensional parameters 

The length scales identified in previous section can be used to scale the state variables. The 

length scale associated with  is  and it is appropriate to define the non-

dimensional height as  

         (7.10)  

and the non-dimensional temperature is scaled as  

         (7.11) 
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7.4. Comparison of length scales 

A comparison of the two length scales defined in section 7.3 leads to three scenarios. First 

when the   second when  and in between the two extremes  

when . Detail on these cases are discussed below. 

In the regime where the length scale associated with the decay of the density profile is 

much shorter than the length scale associated with , then the inequality  is 

true. The density decreases quickly owing to a larger rate of conduction compared to 

dissipation rate. If the temperature at the base of the vibrated bed is at , then the mass 

balance condition requires the density at the base to be . Inserting the value of base 

density and temperature, , leads to the condition where . For 

such a situation to occur either the base velocity has to be sufficiently high or the granular 

gas is near to an elastic gas. 

In the second regime of the conduction length scale being much smaller than the ballistic 

length  thus . For such case it can be shown that . In 

this regime the granular material has large packing fraction and this situation exists at low 

driving velocities and/or high bulk dissipation. An analytical solution cannot be obtained in 

the limit of high dissipation with large near base density due to the non-linear pair 

distribution function. The third scenario exists between the two limits when the conduction 

length is of the order of ballistic length. In both regimes different combinations of 

variations of N* are possible depending upon the intensity of the base driving. Base driving 

can be non-dimensionlised as a Froude number, where .  

By using these non-dimensional parameters, , through an asymptotic analysis it 

is proposed that in the above mentioned limits characteristic scaling relationships exist 

between the state variables (Kumaran, Wildman et al. unpublished). A number of the 

predictions for the scaling relationship are given in table 7.1 and the following sections we 

will test them through solving the hydrodynamic equation set and through molecular 

dynamics simulations.  
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Table 7-1: Scaling relationships for state variables under different limits. 

State variable N
*
<<1 N

*
>>1 

 
 

Fr 

 
1 N

*
 

  N
*
/Fr 

  N
*
/Fr  

 N
*2

 N
*
 

  Fr /N
*
 

7.5. Non-dimensional form of hydrodynamic model and boundary conditions 

Using the non-dimensionalisation of Eq. 7.10 and 7.11 the hydrodynamic model described 

in the set of Eq. 7.1 and 7.2 can be recast into dimensionless form such that 

           (7.12) 

        (7.13) 

The equation set (Eq. 7.12 and 7.13) requires three conditions to generate the solution. The 

first one is that the number of particles in the bed is fixed and secondly that the heat flux 

condition at the vibrating base is specified and finally, there is zero heat flux at . 

The mass conservation for such a system is specified by 

         (7.14) 

where  is given in section 7.4 with N is the number of particles per unit area. Using heat 

flux relationship developed by Richman (Richman 1993), the temperature gradient for 

elastic base is given by  

          (7.15) 

where  is the base packing fraction and is a constant in the limit of a dilute bed. The 

value of scales the heat flux at the base and a detailed estimation of the form of in a 
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moderately dense bed is required. In the following sections we will determine the form of 

 from numerical simulation. 

7.6. Numerical simulation 

a. Hydrodynamic simulations 

The hydrodynamic model of Eq. 7.12 and 7.13 is solved along with the boundary 

conditions given by Eqs. 7.14 and 7.15 using the multiphysics solver COMSOL. Using 

COMSOL user defined PDE modules and its boundary sets, the problem is solved for 

different loading conditions and driving velocities through the finite element method. The 

PDE module of COMSOL allows introduction of differential equations in generalized form 

on a specified domain. The boundary conditions can be specified on each side/end of the 

domain.  

Here we used a one dimensional domain with a unit thickness. Equation 7.12 and 7.13 

form two sets of PDE modules utilizing constitutive relationships defined as scalar 

variables. The pressure equation is introduced using an additional PDE module. The heat 

flux at the top boundary of the domain is specified as zero. The heat flux at the base is 

specified by Eq. 7.15 while the coefficient  is estimated from MD simulations. The 

steady-state solution is obtained using non-linear GMRES solver to a drop tolerance of   

10
-6

. Further details on solution technique and COMSOL can be seen in Chapter 3 and  

COMSOL theory manual (COMSOL 2007). 

a. MD simulations 

Hard sphere MD simulations were also performed to validate the findings of hydrodynamic 

simulations and to determine . These simulations used the model described in Chapter 2, 

using elastic side walls with no upper surface. In order to study the scaling behaviour only 

as the function of hydrodynamic variables particles of unit diameter having unit mass 

under influence of unit gravity for MD simulations. The base-particle coefficient of 

restitution was kept at unity to minimize any effects due to the inelasticity of the base. The 

motion of the base made it difficult to correctly obtain value of packing fraction and 

temperature at the base, and thus, the values of temperature and packing fraction at the 

base are estimated through an extrapolation of the data on the first three grid points 

adjacent to the base. The first grid point next to the base was placed at half particle 
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diameter. The distance between the grid points was varied from half a particle diameter to 

a maximum of one particle diameter.  

The initial configuration of the cell uses a random distribution of grains in the simulation 

cell, which is then run for a total of 10
6 

number of collisions. Evaluation of granular 

temperature and packing fraction is obtained through ensemble averaging over 

10
6
collisions. Complete detail on the working of MD simulations, collision dynamics and 

data collection can be found in Chapter 2 and 3. 

7.7. Results and discussion 

a. Validation at varying N
*
 and Froude number 

In order to validate the new form of hydrodynamic model (Eq. 7.12 and 7.13) we compare 

the results with hard sphere MD simulations. Results are compared for a range of Fr and 

N*. The range for N* is varied from 0.3 to 10 and Fr is varied from 0.25 to a maximum of 

361. In this section we present results for N* = 0.3, 1.0, 2.0 and 3.0 at different Fr to 

demonstrate the comparison in a dilute to moderately dense granular bed. The systematic 

variations of Fr with N* and the bed scaling behaviour is presented forthcoming sections. 

Figures 7.2 and 7.3 show the variations of granular temperatures and packing fractions as 

the function of scaled heights for N* = 0.3 at Fr = 0.25. Good agreement can be seen 

amongst the predictions of MD simulations and hydrodynamic model in most part of the 

cell. With increase of N* to 1.0 (fig. 7.4 and 7.5) the agreement amongst the two is still 

reasonable but differences appear near base and towards the peak packing fraction region. 

The discrepancies becomes much clearer at higher values of N* = 2.0 and 3.0 (see fig. 7.6-

7.9) with the maximum error near the peak packing fraction region rises to 25% for N* = 

3.0 at Fr = 36.0. 
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Figure 7-2: Scaled granular temperature as the function of scaled height for  

at . 

 

Figure 7-3: Packing fraction as the function of scaled height for  at 
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Figure 7-4: Scaled granular temperature as the function of scaled height for  

at . 

 
Figure 7-5: Packing fraction as the function of scaled height for  at 
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Figure 7-6: Scaled granular temperature as the function of scaled height for  

at . 

 
Figure 7-7: Packing fraction as the function of scaled height for  at 
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Figure 7-8: Scaled granular temperature as the function of scaled height for  

at . 

 
Figure 7-9: Packing fraction as the function of scaled height for  at 

. 
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the temperature profiles are no longer comparable as shown in fig. 7.10 with similar order 

of deviations can be seen for packing fraction profiles in fig. 7.11.  

A fundamental parameter in describing flows is the state law that links the state variables 

together. This is often described in the form , and is a key test. In fig 7.12 we 

plot  against η with the state law given in Eq. 7.3 shown for comparison. It can be seen 

that the state law follows the MD simulation predictions up to . At higher packing 

fractions deviations starts to become apparent. Figure 7.12 also shows the behaviour of 

equation of state using two other forms of pair distribution functions different from the Eq. 

7.8. These are adopted from Lun et al (Lun, Savage et al. 1984) and Garzo & Dufty 

(Garzo, Dufty 1999) respectively. Both models also predict reasonable agreement up to 

 but experience deviations at higher packing fractions. It can be concluded that 

discrepancy in the state equation is expected to be larger with higher loadings i.e., N* > 3.0 

leading to deviations in granular temperature predictions from MD simulations. Based on 

fig. 7.2-7.9 the prediction of hydrodynamic model below N* < 3.0 are in reasonable 

agreement with MD simulations. In next section the bulk behaviour of bed is shown with 

systematically varying N* < 3.0 and Fr. 

 
Figure 7-10: Scaled granular temperature as the function of scaled height for 
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Figure 7-11: Packing fraction as the function of scaled height for  at 

. 

Figure 7-12: Pressure to temperature ratio verses packing fraction for MD 

simulations, Carnahan Eq. 7.6, Garzo & Dufty and Lun et al. 
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b. Effect of N* and Fr 

Here we consider two cases, (a) variation of loading (N*) at large values of Fr and (b) 

variation of loading (N*) at small values of Fr. The packing fraction profiles and granular 

temperatures for both cases are plotted in fig. 7.13 and 7.14 for a range of N* from  1.37 to 

3.12 with Fr varied from 36.0 to 1.44 respectively. At high values of Fr, we see that (fig. 

7.13) the trend is for the bed to form a ―block‖ of packed material at the top of the bed, the 

position of which moves towards the base as N* is increased. Clearly, the shape of the 

density profile in the cell depends strongly on the value of N* at high Fr.  

Figure 7-13: (a) Packing fraction and (b) scaled temperature as the function of 

loading N* for same driving velocity (Fr = 36.0). 

The temperature profile is typical for high Fr and low N* but as N* is increased the 

striking result that the granular temperature rapidly goes to near zero is observed, 

suggesting very high bulk dissipation. At heights above the maximum density increase, a 

large decrease in packing fraction occurs with near to zero temperature gradient. Usually 

the region with low temperature gradients is considered dilute having high velocity grains 

with a lesser number of collisions. On the other hand, at N*>>1.0, the region with very low 

temperature gradients is shifted towards the region of high density having very low 

temperatures (see fig. 7.10 and 7.11). The hydrodynamic model predicts a rapid decrease 

in packing profile after density hump to balance mass alongside pressure temperature state 
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equation relationship. Whereas MD simulations show no such abrupt decrease while 

having low granular temperature (see Fig. 7.11 at ). In this region the equation of 

state shows deviations from the MD simulations.  

The behaviour at low Fr is quite different. We see that as we increase N* the peak in 

density is not so pronounced and that its movement towards the base is not so strong.  For 

the case N* <<1.0, a nearly elastic gas, the density decreases exponentially from peak base 

density due to nearly constant temperature profile. As N* is increased, the absolute value 

of the temperature is reduced, but we do not observe the characteristic reduction in T* to 

near zero. In fig 7.13b we see that the ratio of  is of the order ~10, whilst in fig 7.14b 

we see a much lower ratios. In figure 7.15 we show the variation in the packing fraction 

and temperature for a fixed N* = 2.0 and varying Fr. The behaviour of the packing fraction 

and granular temperature is somewhat reminiscent of that shown in fig. 7.13. However 

near the base the temperature decreases and the packing fraction increases significantly 

with the reduction of Fr. At lower values of Fr, the heat flux at the base is reduced 

resulting in lesser granular temperatures and higher packing fractions near the base.   

Figure 7-14: (a) Packing fraction and (b) scaled temperature as the function of 

loading N* for same driving velocity (Fr = 1.44). 
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Figure 7-15: (a) Packing fraction and (b) scaled temperature as the function of Fr for 

same loading condition (N* = 2.0). 

7.8. Characterization of the heat flux 

In Eq. 7.15, the term  was left undetermined. It is possible to determine this function 

using the MD simulations if we rearrange Eq. 7.15 thus, 

          (7.16) 

where  is the heat flux at the base and  is the base packing fraction, we can see that the 

right hand side of the equation can be determined through MD simulations. It seems likely 

that will be a function of base density (Kumaran, Wildman et al. unpublished). 

Therefore, if we plot  as a function of packing fraction for different values of the 

coefficient of restitution e, we can specify the form of . In our analysis we assume a 

form of  with a as constant. Figures 7.16 to 7.18 show the variation of  

as seen in the MD simulations alongside fitted curves. The fitted form shows good 

agreement and suggest that the dependence on the base density is close to that specified, at 

least within the range of packing fractions tested. We see a small downward trend in a as 

the coefficient of restitution is reduced, with a = 5.97, 5.31 and 4.14 for e = 0.98, 0.85 and 

0.70 respectively.  
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Figure 7-16: Variation of  as the function of base packing fraction for e = 0.70. 

 

Figure 7-17: Variation of as the function of base packing fraction for e = 0.85. 
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Figure 7-18: Variation of as the function of base packing fraction for e =0.98. 

7.9. Scaling relationships 

In previous sections we have established the influence of Fr and N* on the bed behaviour; 

in this section we will examine the scaling of the state variables using MD simulations and 

compare our results to the predictions in table 7.1.  Where predictions involve parameter 

estimation at the base, we extrapolate to z* = 0 from the local z* > 0 behaviour. Difficulties 

in calculating the temperature gradient  in the bulk and then extrapolating mean that the 

scaling of this parameter was not tested.  
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large N*. Therefore, we plot in Fig. 7-19 the variation of  with  whilst in Fig. 

7.20 we show the variation of  with Fr for N* 0.3, 1.0, 3.0 and 10.0.  Figure 7.19 shows 

that at low N* that a scaling of  with  is a reasonable approximation. At N* 1.0 

we see that  scales well with Fr through a function of the form of , where 
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reasonable, and the physics depends strongly on Fr and N*. The dependence of base 

temperature on N* is not predicted but it scales the value of  for N* 1.0. However in 

Fig. 7-20 some scatter from the master trend line can be observed resulting from the 

fluctuation of the value of m especially at higher values of N*. 

 

Figure 7-19:  Base temperature for N* = 0.3 at varying V
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Figure 7-20:  Base temperature, , for N* = 1.0, 3.0 and 10.0 at varying m x Fr. 

 

 

Figure 7-21:  Value of m as the function of N*. 
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b. Scaling for  

The ratio of base temperature and the asymptotic, high altitude temperature is expect to 

scale as 1 for small N* and N* for large N*. At N* <<1.0, the Fig. 7.22 shows the ratio is 

almost constant and close to 1.0 as expected irrespective of Fr and e, though there appears 

to be a slight Fr dependency at small Fr. With N* <<1.0, the gas is a near elastic one so a 

flat temperature profile is expected. While for N* >1.0, the ratio is expected to scale with 

N*. In Fig. 7.23 the variation of  is shown against N* along with mean values and 

deviations. We see an mean increasing trend with the increase of N*. However high scatter 

in the value of  at each N* can be seen primarily linked with the variation of Fr. The 

scatter is significantly large for N*>>1.0. At N* >>1.0 the dissipation is expected to 

increase and large temperature ratios are expected at sufficient base driving. It is observed 

in section 7.7 that at high Fr, the asymptotic temperature, , decreases significantly close 

to zero (see Fig. 7.13(b)) and the resultant  is strikingly higher compared to the low Fr 

case (see Fig. 7.14(b)). As stated earlier a weak dependence on Fr exists for the base to 

asymptotic temperature ratio at N*<<1.0. However for N*>1 it is expected the likely trend 

is of the form of  . At low Fr and higher packing fraction, an exact form 

of the relationship cannot be deduced at N*>>1.0 and in this region the theoretical 

predictions are likely to be less applicable.  
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Figure 7-22: Ratio of Base temperature, , to Asymptotic temperature, , for N* = 

0.3. 

Figure 7-23: Ratio of Base temperature to minimum temperature for Fr = 1.0 with 

varying N*. 
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c. Scaling for  

In Fig. 7.24  we show the variation of packing fraction at the base, , with the ratio N*/Fr. 

For all values of N*/Fr < 1.0 in Fig. 7.24, an increasing trend can be observed as expected. 

The cluster shows a consistent trend generating a master scaling pattern at lower values of 

N* or high values of Fr especially with packing fractions less than 0.2. At higher values of 

 still an increasing trend is seen while the packing fraction at the base, , is more 

than 0.20. It can be seen that the expected trend is observed with the . 

 

Figure 7-24: Base packing fraction at varying ratio of N*/Fr . 
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identifiable clusters can be seen. Each of these three separate clusters has an identical 

coefficient of restitution for all of its values. Starting from the bottom with e = 0.98, 0.85 

and 0.70 to the top such that the least elastic corresponds to the maximum packing fraction. 

This highlights an indirect dependence of  on e. While for , the trends are no 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
*
/Fr


o

 

 



 

145 
 

longer linear and dependency on e becomes less significant. For  i.e., at low Fr 

or high value of N* with high peak packing fractions the predicted are expected to deviate 

from the MD simulations.  

 

Figure 7-25: Peak packing fraction for N* = 0.3, 1.0, 3.0 and 10.0 at varying ratio of 

N*/Fr . 
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Figure 7-26: Location of Peak packing fraction for N* = 0.3 at varying ratio of Fr/N* 

with e. 

 

Figure 7-27: Location of Peak packing fraction for N* =1.0 at varying ratio of Fr/N* 

with e. 
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Figure 7-28: Location of Peak packing fraction for N* = 3.0 at varying ratio of Fr/N* 

with e. 

 

Figure 7-29: Location of Peak packing fraction for N* = 10.0 at varying ratio of 

Fr/N* with e. 
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The analysis presented in this chapter indicates the importance of the two parameters Fr 

and N* and their scaling with steady bed physics. In general the predicted scaling 

relationships of table 7.1 are observed for the dilute limit case especially for base 

temperature, , base packing fraction, , and temperature ratios, . With the 

introduction of moderately to high density granular bed the trends start to change and 

deviations from the predicted scaling appear to occur. The non-linearity is clearly visible in 

the bulk behaviour as seen in the trends of peak packing fractions, , and their 

locations, .  

At N*<<1.0, i.e., when the length of conduction is larger than the dissipation length, we 

expect the peak packing fractions very close to the base and . In Fig. 7.26 we 

observe  within one particle diameter while Fig. 7.22 shows the almost constant base 

to asymptotic region temperature ratio. For N*>>1.0 the predicted scaling behaviour 

depends upon the base driving Fr. We observe that the peak packing fraction, , their 

locations, ,and the base packing factions, , show the increasing trend in the limit 

 thereby at high Fr or low values of N* the general trend exists. Interestingly the 

predictions of  is significantly consistent for N*>>1.0 with additional dependence on N* 

is predicted linked through the factor m. However at low Fr or higher values of N* the 

packing fractions are expected to increase and the effect of dilute limit scaling is less likely 

to be observed as seen in the case of  and . Apart from predicted scaling 

unexpectedly weak additional dependence on the coefficient of restitution has been 

observed in few of the cases. 

It can be concluded that the scaling are observed in general with expected deviations are 

seen in the conditions of low Fr and high N*. At high N* the peak packing fraction is 

significantly high due to moderately to dense bed loading conditions and at low Fr the bed 

is not sufficiently fluidized. This suggests that the model begins to fail to capture the main 

physics of the system under these conditions. The main reason for this is that the model is 

proposed for dilute nearly elastic system, and we have seen in Chapters 3-5, that the exact 

physics of the granular bed is far more complex and requires additional constitutive 

relationships and modifications to the current coefficients. This model does, however, set 

the basis for describing the main scalings for vibrofluidized granular beds, and in the future 

we anticipate that effects of further inelasticity and enhanced density could be 

incorporated.  
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7.10. Summary 

This chapter showed that by non-dimensionalisation of the length scale using  , 

two prominent parameters can be developed, N* and Fr. The newly formed non-

dimensional model is solved shows good agreement with MD simulations especially at 

lower values of N* and deviates progressively for N*  >>1.0. For N* > 3.0, the predictions 

of nature of the constitutive relationships differs significantly from MD simulations 

indicating dense gas higher order effects. The parameters of N* and Fr also exhibit scaling 

behaviour in the dilute regime for characteristics granular quantities. The results included 

here are based on near elastic model and the exact physics of the granular bed is far more 

complex, however, this sets the basis for describing the general scalings for vibrofluidized 

granular beds.   
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Chapter 8 Conclusion and future recommendations 

8.1. Summary of conclusions 

This dissertation is focused on the mechanics of granular flows from the aspect of 

evaluation and study of the constitutive relationships. Spatial and temporal aspects of the 

dry mono-dispersed granular flows in vibrated beds are studied through experimental 

techniques, kinetic theory based particle level and continuum order models. We showed a 

complete solution of Navier-Stokes order hydrodynamic model with comparison of two 

sets of constitutive form for steady-state as well as time varying nature validated against 

the results of experiments and MD simulations. Together these constitutive relationships 

cover majority of monodisperse granular flows in general and particularly the model 

proposed by Garzo and Dufty (Garzo, Dufty 1999) covers wide range of inelasticity in 

dissipative granular flows. All hydrodynamics simulations are carried out within the 

commercially available modules of mercantile finite element method CFD package 

COMSOL. Although we have discussed granular flows in vibrated beds, the solution 

methods and applicability of the proposed hydrodynamic models are not limited and the 

conclusions drawn here are applicable for general granular behaviour under similar flow 

conditions. The model, solution technique and the implementation methods used in this 

dissertation can be utilized with appropriate geometric and boundary condition 

modifications to solve similar granular flow problems. This work is a small step towards 

the commercialisation of general granular flow module in multiphysics environment 

equipped with latest validated mathematical models.  

In this dissertation we started with the validated steady state hydrodynamic model, 

developed by Vishwanathan (Viswanathan, Wildman et al. 2006) with near elastic 

constitutive relations (SSM-Jenkins), it was extended to cover broader range of inelastic 

granular flows using constitutive relationships proposed by Garzo and Dufty (Garzo, Dufty 

1999) (SSM-Garzo). Validation for the steady state case in a vibrated bed was completed 

through comparison of the results for SSM-Garzo against those for SSM-Jenkins and PEPT 

experimental data, and showed that SSM-Garzo agrees well with SSM-Jenkins model in 

the dilute regime. Upon validation both models were extended to obtain a time-dependent 

solution at various loading conditions and frequencies of excitation. To our knowledge the 

complete time dependent solution of the ATD-Garzo model has not been reported in the 

literature prior to this dissertation.  
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Time dependent models showed the influence of base frequency on the characteristics of 

granular flow. At low frequencies of excitation both time dependent models, ATD-Jenkins 

and ATD-Garzo, successfully described the dynamic as well as time averaged nature of the 

vibrofluidized bed, and compared reasonably well with MD and experimental results. We 

observed the appearance of strong rolling and wave propagation and showed a link 

between the cyclic increase in the granular temperature with the viscous effects. The 

hydrodynamic results especially for ATD-Garzo showed a reasonable match with the MD 

simulations as a function of time. A qualitative matching behaviour was also seen with the 

experimental results. However at high frequencies (near ultrasonic) the lack of separation 

in the timescales between grain-base interaction and the base time period led to a collapse 

in the heat flux making the hard sphere based model inappropriate for the boundary 

condition estimation at these frequencies. Using a soft sphere model based MD simulations 

we demonstrated that the frequency of vibration has a strong effect on the fluidization 

behaviour of granular gas. However analysing the bulk behaviour independently from the 

base boundary condition showed that at high frequency, hard sphere based models were 

able to capture the steady state behaviour reasonably well for the cases considered in this 

dissertation.  

Further analysis using the combination of both low and high frequency vibrations in a 

granular gas through amplitude modulations demonstrated the presence of low frequency 

wave propagation in the granular cell. The physics of the gas remained somewhat 

unaffected by the high frequency excitation. However the strength of the wave-like 

temperature fluctuations in the bulk was significantly reduced due to restricted heat flux 

from the base at high frequency. Analyzing the bulk behaviour independently from the heat 

flux boundary condition showed that both time-dependent hydrodynamic models (ATD-

Jenkins & ATD-Garzo) predicted a reasonable qualitative comparison with MD 

simulations results in the phase-resolved granular temperature. Importantly the nature of 

the wave propagation in the bulk qualitatively resembled the wave motion caused by the 

low frequency non-modulated excitation. This highlights that the wave motion in the 

granular gas is a dynamic influence caused by the low frequency vibration of the granular 

bed.  

In general the bulk physics was reasonably well predicted by both hydrodynamic 

formulations. Using a simplified hydrodynamic model key parameters were identified that 

demonstrate the broad trends of behaviour the granular flows follow. A one-dimensional 
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steady state model suitable for near elastic dilute limits proposed key scalings with slightly 

different non-dimensionalisation method. Despite having a number of simplifications the 

non-dimensional form of constitute relationships in the model showed good agreement 

with MD simulations especially in the dilute to moderate dense granular bed however at 

high loading, N*, and low driving, Fr, the model failed to capture main physics due to 

complex nature of flow at high bed densities.  

Testing of the predicted scalings using hard sphere based MD simulations showed validity 

in the dilute to moderate loading conditions though the influence of packing fraction and 

coefficient of restitution were noted in some of the cases. This model does, however, set 

the basis for describing the main scalings for vibrofluidized granular beds, and in the future 

we anticipate that effects of further inelasticity and enhanced density could be 

incorporated. 

8.2. Future recommendations 

The hydrodynamic model and the constitutive relationships used in this thesis describes 

wide-ranging three dimensional time dependent mono-dispersed granular flows. They are 

simulated in a vibrated bed for the purpose of validation and the understanding of flow 

physics in a controlled shear-free environment. In general these validated models can be 

used to simulate complex granular physics in different geometries using the same 

implementation technique with appropriate modifications. We expect that in near future 

further application of these models will be made for simulating high shear rate and  

complex granular flows in different geometries and operating conditions.  

The multiphysics environment of COMSOL software facilitates the use of modules of 

different branches of physics and chemical engineering together in a single solution. This 

allows direct implementation of the granular flow module, developed in this dissertation, 

as a multiphysics module with ease. COMSOL also allows the possibility of extending the 

granular module to include latest developments of the mathematical models. Different 

constitutive formulations and forms of boundary conditions have been proposed to 

describe mono, bi and poly-disperse granular flows e.g., (Garzo, Dufty et al. 2007) for 

multiphase environments. We expect that in the near future different granular flow models 

and boundary conditions will be implemented within the broader framework proposed in 

this research work.  
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This dissertation highlighted the time dependent influence of frequency of base motion on 

the fluidization levels and the physics of granular gas. The failure of instantaneous 

collision models for the prediction of heat flux is expected at high frequencies of base 

vibration however the limiting values of base frequency could vary with the variation of 

the material properties of the participating granular media. The contact duration of the 

grain with base surface varies with the material properties of interacting surfaces. We 

expect that for different types of surfaces a general relationship could be developed 

between heat flux and the product of frequency and contact duration, , where  is the 

contact duration between grain and the surface. Such a trend shall enable us in determining 

the limit of applicability of hard sphere based models for high frequency vibrated beds. We 

recommend extensive experimental testing of different material combinations to obtain 

such trend. 

The influence of multiple frequencies through amplitude modulation has already shown 

interesting time varying features in granular gas. With the help of modulation we expect 

temporal as well as spatial variations in the granular gas. It is expected that with the 

different types of modulation schemes, duty cycles, amplitude ratios and wave forms, 

further patterns in the bed will be observable. From the perspective of theoretical 

understanding of instability initiation and propagation in the granular flows, amplitude 

modulation gives a new dimension to contemplate. We recommend further 

experimentation and extensive numerical simulations with types of modulation schemes 

and amplitudes to study different phenomena such as granular flow initiation, bulk 

perturbation propagation and pattern formations. 

The non-dimensionalisation of constitutive relationships and the governing equations 

highlighted key scaling nature in granular flow. However the model used in this study is 

simplified and it has also been established in this dissertation that a complete description of 

granular flow is more complicated especially as the dissipation of media increases. It is 

recommended that the proposed model and the non-dimensionalisation shall be extended to 

include appropriate constitutive relations for a Navier-Stokes order description of granular 

flows. The flow characteristics and scaling shown in this study is only studied in one 

dimension while Chapters 3 and 4 highlighted significant radial variations linked with the 

influence of dissipative side boundary wall. We recommend further investigation of these 

models in realizable systems using numerical simulations and experiment. 
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