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Abstract

Background: Cancer immunotherapy has demonstrated significant clinical activity in different cancers. T cells represent
a crucial component of the adaptive immune system and are thought to mediate anti-tumoral immunity. Antigen-
specific recognition by T cells is via the T cell receptor (TCR) which is unique for each T cell. Next generation sequencing
(NGS) of the TCRs can be used as a platform to profile the T cell repertoire. Though there are a number of software tools
available for processing repertoire data by mapping antigen receptor segments to sequencing reads and assembling
the clonotypes, most of them are not designed to track and examine the dynamic nature of the TCR repertoire across
multiple time points or between different biologic compartments (e.g., blood and tissue samples) in a clinical context.

Results: We integrated different diversity measures to assess the T cell repertoire diversity and examined the robustness
of the diversity indices. Among those tested, Clonality was identified for its robustness as a key metric for study design
and the first choice to measure TCR repertoire diversity. To evaluate the dynamic nature of T cell clonotypes across
time, we utilized several binary similarity measures (such as Baroni-Urbani and Buser overlap index), relative clonality
and Morisita’s overlap index, as well as the intraclass correlation coefficient, and performed fold change analysis,
which was further extended to investigate the transition of clonotypes among different biological compartments.
Furthermore, the application of differential testing enabled the detection of clonotypes which were significantly
changed across time. By applying the proposed “3D” analysis pipeline to the real example of prostate cancer
subjects who received sipuleucel-T, an FDA-approved immunotherapy, we were able to detect changes in TCR
sequence frequency and diversity thus demonstrating that sipuleucel-T treatment affected TCR repertoire in blood
and in prostate tissue. We also found that the increase in common TCR sequences between tissue and blood after
sipuleucel-T treatment supported the hypothesis that treatment-induced T cell migrated into the prostate tissue. In
addition, a second example of prostate cancer subjects treated with Ipilimumab and granulocyte macrophage
colony stimulating factor (GM-CSF) was presented in the supplementary documents to further illustrate assessing
the treatment-associated change in a clinical context by the proposed workflow.

Conclusions: Our paper provides guidance to study the diversity and dynamics of NGS-based TCR repertoire
profiling in a clinical context to ensure consistency and reproducibility of post-analysis. This analysis pipeline will
provide an initial workflow for TCR sequencing data with serial time points and for comparing T cells in multiple
compartments for a clinical study.
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Background
T cells are a key component of the adaptive immune sys-
tem, targeting infected or altered cells, such as cancer-
ous cells. Cell targeting is a consequence of recognition
of processed peptides displayed on the cell surface. Proc-
essed peptides are derived from antigens, presented by
the major histocompatibility complex on target cells
which in turn are recognized by the T cell receptor
(TCR) on the surface of T cells [1]. In the context of
cancer, antigens range from aberrantly expressed self-
antigens to mutated self-antigens (neo-antigens) [2, 3].
Because of the enormous breadth of epitopes recognized
by TCRs, the T cell repertoire is extremely diverse and
dynamic. Diversity of the TCR is generated through
somatic recombination during T cell differentiation in
the thymus. Recombination of the Variable (V), Diversity
(D) and Joining (J) antigen receptor segments, as well as
stochastic nucleotide addition and deletions, in the TCR
generate a hypervariable complementary determining
region 3 (CDR3) – the portion of the TCR that mediates
the specificity of peptide recognition [4–6].
The human immune system contains >109 different T

cells and measuring responses to immunotherapy by
bulk biological analysis methods (e.g. flow cytometry)
cannot sample enough T cells to characterize immuno-
therapy driven changes at the individual T cell clone
level. The emergence of technologies such as next-
generation sequencing (NGS) has allowed researchers
to sequence across the variable region, which can be
used as an identifier for T cell clonotypes. This allows
researchers to track, and quantify, individual clonotypes
across time as well as among different biological com-
partments such as circulating peripheral blood and
intra-tumoral tissue [7] at a finer level than traditional
assays such as flow cytometry [8]. This novel technol-
ogy has recently been utilized to shed insight into the
effects of immunotherapies such as anti-CTLA4 and
anti-PD1 on anti-tumoral immunity and survival [9, 10]. It
has also been leveraged to understand the heterogeneity
of tumor infiltrating T cells and holds potential to be a
prognostic biomarker [11, 12].
Current approaches to understand the T cell repertoire

diversity involve quantitating the number of unique clo-
notypes detected or utilizing ecological diversity indices
such as the Shannon Index [13] and Clonality [14]. The
Shannon Index and Clonality have been used to show
that a more restricted T cell repertoire correlates with
clinical response to pembrolizumab treatment in melan-
oma subjects [9, 15]. Recently, Cha et al. have utilized
the Morisita’s Distance to assess the dynamics of the T
cell repertoire and showed that repeated doses of anti-
CTLA4 in melanoma and prostate cancer patients con-
tinued to remodel the T cell repertoire [10]. However,
most literatures on TCR sequencing focus on the top

ranked clones or the clones with larger abundance. Here,
we proposed a “3D” analysis pipeline that was designed
for assessing Diversity of the T-cell repertoire at a single
time point, evaluating Dynamics of TCR sequencing
across the time course or among different biological
compartments, and performing Differential testing to
detect the clonotypes whose abundance significantly
changed among evaluated time points (Fig. 1a). We used
the published data of an open-label, Phase II clinical trial
of neoadjuvant sipuleucel-T [16, 17] and a Phase I/II
clinical trial of ipilimumab with a fixed dose of GM-CSF
to metastatic castration resistant prostate cancer patients
[10] as the two test cases. Besides a detailed description
of each measurement, we also examined the robustness
of diversity/dynamics indices and compared their per-
formance over the various thresholds used to filter the
sequencing data. We then recommended major matrices
for sample size calculation in a study where the diversity
of T cell repertoire was one of the major endpoints. We
further investigated the assessment of dynamic changes
among different biological compartments by accounting
for their presence or absence in each compartment
assessed. Such an analysis pipeline will provide an ini-
tial workflow for TCR sequencing data with serial time
points and/or in multiple compartments in a clinical
context.

Methods
Throughout this paper we define a sample as TCR se-
quencing data from a single biological sample of a sub-
ject at a particular time point. All the analyses were
performed by R, the statistical computing software [18].
Statistical significance was declared at p < 0.05. Unless
noted, there were no multiple testing adjustments per-
formed. A typical TCR dataset for a single sample con-
tains raw read count fi and count frequency pi for each
clonotype, where pi = fi/∑l=1

n fl. After preprocessing the
raw sequencing data, for each sample, we first calcu-
lated the number of unique clones (n) and read depth
F = ∑i=1

n fi, which is the measure of the total count of
TCR sequences.

Determination of TCR sequence diversity
We first characterized the diversity of clonotypes of each
sample by using Renyi diversity of order a:

Ha ¼ 1
1−a

loge
Xn

i¼1
pai ;

where pi is the frequency of clonotype i for the sample
with n unique clonotypes, and the corresponding Hill
number is Na = exp(Ha) [14]. As stated in [19], many com-
mon diversity indices are special cases of Hill numbers:
N0 = n, N1 = exp(H), N2 =D2, and N∞ = 1/max(pi), where
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Shannon index H ¼ −
Xn
i ¼ 1

pi loge pið Þ

Gini Simpson D1 ¼ 1−
Pn

i¼1p
2
i

Inverse Simpson D2 ¼ 1Xn

i¼1
p2i

The Shannon index is a diversity index scaled from 0
to 1, minimally diverse to maximally diverse respectively.
H/loge(n) is Pielou’s evenness (equability), and

Clonality ¼ 1−H= loge nð Þ;
which can be considered as a normalized Shannon index
over the number of unique clones. Both Shannon index

and clonality are the most popular indices currently
used to assess T cell repertoire diversity. We can regard
a sample more diverse if all of its Renyi diversities are
higher than in another samples.
We also considered coefficient of variation (CV),

known as relative standard deviation, to assess the TCR
diversity. It is a standardized measure of dispersion of a
probability distribution or frequency distribution and
was first used to assess the TCR diversity in Dziubianau
et al. [20]. Since the frequency distribution of the TCR
sequence was skewed to small frequencies (Fig. 1b and
c), we considered logarithm transformation with base
10 of clonotypes’ frequency, i.e., log10pi, therefore, we
used geometric coefficient of variation (GCV) defined
by Kirkwood [21]:

a

b c

Fig. 1 a The “3D” analysis pipeline of next-generation sequencing based TCR repertoire data. It consists of assessing the Diversity of the T-cell
repertoire, evaluating the Dynamics of T-cell clonotypes across the time course or among different biological compartments, performing Differential
testing to investigate differences in the abundance of each clonotype between pre- and post-treatment. b The count distribution of unique TCR
clonotypes of a healthy subject (NeoACT study). Using one of the healthy subjects for illustration, the x-axis represents each unique clonotype
in descending order of the count, and the y-axis is log10(count) of each clonotype from PBMC at week 0 (black), week 2 (red) and week4 (purple).
c The count distribution of unique TCR clonotypes of a treated prostate cancer subject (NeoACT study)
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GCV ¼ exp Sln−1ð Þ;
where Sln = S × 10 × loge(10) and S is the standard
deviation of log10pi, i = 1,…, n.

Evaluation of the dynamic nature in TCR sequence across
time or between different biological compartments
To assess the dynamic nature in TCR repertoire, we
measured the overlap among TCR sequences across time
points or between different biological compartments for
the same subject by binary similarity matrices. Choi and
the coauthors [22] collected 76 binary similarity mea-
sures used over the last century and revealed their corre-
lations through hierarchical clustering technique. As an
example, we utilized the Baroni-Urbani and Buser (BUB)
overlap index [23]. Unlike most of the overlap index
measures, BUB includes the negative matches, i.e., the
absent clones. For example, to calculate BUB of each
two time points across three time points j1,j2 and j3, we
first consolidated all clones present in any of the three
time points and let n1 = the number of clones present at
time j1;n2 = the number of clones present at time j2; n12
= the number of clones present in both time points and
d12 = the number of clones absent in both time points;
then BUB overlap index of time points j1 and j2 equals:

BUBj1j2
¼ n12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n12d12

p

n1 þ n2−n12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n12d12

p
:

It is equivalent to the Jaccard coefficient = n12
n1þn2−n12

,

when there are only two time points. The advantage of
BUB overlap index is that it includes the information of
the number of the absent clones, thus allows the re-
searchers to observe and account for changes across all
available samples. This ensures that different paired
BUBs (e.g. BUB12, BUB13 and BUB23) across the same
set of available samples are comparable. There are several
other binary similarity measures that have closer distance
with the BUB overlap index based on hierarchical cluster-
ing, thus can be considered as the substitute of the BUB

overlap index, such as BUB2 ¼ 3n12− n1þn2ð Þþ ffiffiffiffiffiffiffiffiffiffi
n12d12

p
n1þn2−n12þ

ffiffiffiffiffiffiffiffiffiffi
n12d12

p , Faith

and Mountford [22].
The binary similarity measures are straightforward but

only use very limited information of TCR repertoire, i.e.,
the presence or absence of clones across the samples. In
addition, we utilized the relative clonality (RCL) which
was calculated as the ratio of the clonality at two time
points to measure the dynamics. Furthermore, we con-
sidered matrices which aggregate the changes in abun-
dance of each clonotype across time points to evaluate
the dynamic nature of TCR repertoire across time
course. Morisita's overlap index [24] has been used in
several recent publications as a statistical measure of
dispersion of clones in TCR sequence [10]. It is based on

the assumption that increasing the size of the samples
will increase the diversity because it would include more
different clonotypes.

CD ¼
2
Xm

i¼1
f ijf ikXm

i¼1
f 2ij

F2
j

þ
Xm

i¼1
f 2ik

F2
k

!
FjFk

 

fij and fik are the abundance of clonotype i with the read
depth Fj and Fk from time point j and k, respectively.
CD = 0 if the two samples do not overlap in terms of clo-
notypes, and CD = 1 if the clonotypes occur in the same
proportions in both samples.
The intraclass correlation coefficient (ICC) is another

matrix we proposed to evaluate dynamic nature in clone
abundance, which is commonly used to quantify the de-
gree to which individuals with a fixed degree of related-
ness resemble each other in terms of a quantitative trait.
One of the applications of ICC is to assess the persist-
ence of quantitative measurements at different time
points for the same quantity. In the framework of a ran-
dom effects models zij = u + aj + eij, where zij = log10pi of
the observed clone i in sample j for a particular subject,
u is an unobserved overall mean, aj ~ N(0, Sa

2 ) is an un-
observed random effect shared by all clones in sample j,
and eij ~ N(0, Se

2) is an unobserved random error. Both
aj and eij are assumed to be identically distributed, and
uncorrelated with each other. Thus,

ICC ¼ S2a
S2a þ S2e

:

The function ‘icc’ in R package ‘irr’ [18] was used to
calculate ICC. The advantage of ICC is that it can be
used to evaluate the dynamic change in clone abundance
for more than 2 time points. However, due the nature of
the TCR sequences that a big proportion of clones only
present at one time point, i.e., their counts equal 0 in
another time points, which greatly drives the value of
ICC. Therefore, ICC is more appropriate to evaluate the
dynamic change of the common clones present at all the
time points that we are interested in.
Besides aggregating the dynamic changes of clones of

the T cell repertoire, we further investigated the distribu-
tion of the fold change (FC), for clonotype i, FC ¼ log2
pik
pij
, where k and j are two different TCR samples from

the same subject. Furthermore, based on FC, we clus-
tered the clonotypes into three groups: decrease if FC ≤
-c, unchanged if –c < FC < c and increase if FC ≥ -c,
where c is an arbitrary constant, for example c = 2
stands for a 4-fold change. When comparing the clono-
types frequencies between different biological compart-
ments (e.g., blood sample and tissue sample), we
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recommended adjustment to account for the distinc-
tions due to the biological characteristics. For example,
we multiply c by ∑i=1

m log2pik/∑i=1
m log2pij.

Exploration of the treatment effect or the clinical benefits
As stated above, to explore the treatment effect or the
clinical benefits, the diversity/dynamics index can be
served as an endpoint. To test for a treatment effect, we
can compare the diversity index of all subjects among
time points by repeated measures analysis of variance
(ANOVA) (or its nonparametric comparative). To ex-
plore the difference of over-time dynamics among the
groups defined by clinical outcomes (e.g., clinical re-
sponders vs. non-responders or long-term survivors vs.
short-term survivors), we can compare the dynamics
index among the groups by ANOVA (or its nonparamet-
ric comparative). In addition, to allow for a varying
number of follow-up measurements, the repeated meas-
ure ANOVA methods with a mixed model approach
(treating time as a random effect and clinical outcome
as a fixed effect) can be utilized, and the specific com-
parison of change in the diversity index between baseline
and any specific post-baseline time point can be tested
using linear contrast.

Differential testing
The methods described above treated all clonotypes
from the same sample as a single unit, and therefore
failed to distinguish which unique clonotypes may be
the most significant driver for observed effects. We
therefore considered a modified differential expression
analysis (DEseq) [25] to explore treatment effects on the
abundance of clonotypes for each clonotype as we did
in our recent work [10]. The DESeq R package [25] was
developed explicitly for identification of differentially
expressed genes in RNA-Seq experiments and it is tech-
nically possible to work with experiments with small
number of replicates or without any biological repli-
cated. TCR repertoire data differs from typical gene ex-
pression data, in that it is heavily skewed towards rare
clonotypes, with large numbers of clonotypes appearing
only a few times, and many clonotypes appearing only
once [10]. Modifications were made to accommodate
the specific case of repertoire analysis: 1) normalization
was performed using only clonotypes that had > =5
counts in at least one sample; 2) a dispersion model
calculated as the median of dispersion curves from all
samples (more detailed illustration in the result sec-
tion). This modification served to account for normal
variation in the repertoire over time, and to compen-
sate for the lack of replicates in the experimental de-
sign. The detection of the significant clones by DESeq
analysis was based on controlling for false discovery
rate (FDR) [26] <0.05.

Illustration datasets
TCR profiling data from five subjects enrolled in the
NeoACT study (NCT00715104) [16, 17] were used for
major illustration. NeoACT study was a phase II neoadju-
vant study examining whether sipuleucel-T induced T cell
infiltration into the prostate. Subjects received sipuleucel-
T (prepared by culturing freshly obtained leukapheresis
peripheral blood mononuclear cells (PBMC) with a fusion
protein of prostatic acid phosphatase and GM-CSF) at the
standard 2-week intervals for three planned doses. Radical
prostatectomy was performed 2–3 weeks after the final
sipuleucel-T infusion. PBMCs were evaluated in the five
treated subjects at week 0 (before sipuleucel-T treatment)
and during treatment at weeks 2 and 4. RP tissues from
the same subjects were also evaluated. In addition to the
NeoACT subjects, TCR data from three healthy donors
and five untreated prostate cancer subjects were also used
for comparative purposes. Serial (week 0, 2 and 4) PBMCs
from healthy subjects receiving no treatment as well as
PBMC and RP tissue from untreated prostate cancer
subjects were used as comparators.
The second dataset includes PBMCs from 21 meta-

static castration resistant prostate cancer patients treated
with anti-CTLA-4 (ipilimumab) and GM-CSF in a
single-center phase I/II clinical trial (NCT00064129)
[10]. Patients were treated with up to four doses of ipi-
limumab ranging from 1.5 to 10 mg/kg and GM-CSF at
250 mg/m2 per day. Anti–CTLA-4 antibody was ad-
ministered every 4 weeks with GM-CSF given daily on
the first 2 weeks of these cycles. Only baseline (week 0)
and week 2 data were included in the current paper for
illustration purpose (results/figures were presented in
the Additional file 1: Figure S6).

TCRβ amplification and sequencing
The TCRβ CD3 (CDR3β) region for both PBMC and tissue
samples was amplified and sequenced using the Immuno-
SEQ assay (Adaptive Biotechnologies). The amplification
and sequencing of TCRβ repertoire as well as clonotype
identification and enumeration have been previously
described in detail [27].

Results
Visualization of TCR sequence abundance before and
after sipuleucel-T treatment
Instead of using scatter plots, which are commonly used
to visualize the distribution of frequencies of two TCR
samples from the same subject, we plotted the log10(count)
of each unique clonotype in descending order of count
(Fig. 1b, c), and inclusive of multiple samples in one graph.
The distributions of clonotype frequencies of serial blood
samples obtained every 2 weeks were very similar in a
healthy subject (Fig. 1b). Whereas the prostate cancer
subject receiving sipuleucel-T treatment had different
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distribution profiles among the three time points
(Fig. 1c). We also observed that the baseline curve inter-
sected with the curves at week 2 and week 4 at count of
23 (log10(count) = 1.36) and 24 (log10(count) = 1.36), re-
spectively. The similar results were found for other
treated patients (figures were not shown) with the inter-
section points ranging from count of 10–30, which
implied that the difference in the number of unique
clones was caused by the clones with the counts smaller
than those intersection points. The clones with counts
smaller than the intersection point might have influence
on the diversity and dynamics indices; therefore, those
intersection points might be helpful for finding the best
cutoff to filter the data. Our R package provides the
function to obtain such an intersection point.

TCR sequence diversity changed following the first
treatment with sipuleucel-T
The first phase of the proposed “3D” analysis pipeline
was quantifying diversity (Additional file 2: Figure S1A-C).
As shown in Additional file 2: Figure S1B, the clonality for
the healthy subjects were consistent for two subjects
across time with the third subject was later verified
having a cold at week 0. The treated subjects had a
wide range of baseline clonality, however, the clonality
of the majority of treated subjects had a decrease from
week 0 to week 2 (p = 0.063) but became stable from week
2 to week 4 (p = 0.875) indicating that TCR diversity chan-
ged after the first treatment but didn’t significantly change
from week 2 to week 4.

Evaluation of the dynamics of TCR sequence across the
sipuleucel-T treatment time course showed that the
commonality of TCR sequence between week 2 and 4
increased
As presented in Additional file 3: Figure S2A, the BUB
overlap indices of PBMC over week 0, 2 and 4 were con-
sistently about 0.2 for healthy donors, but for the treated
prostate cancer subjects there was a significantly greater
increase in the overlap between week 2 and 4 than the
overlap of week 2 (week 4) with baseline (p = 0.004).
Additional file 3: Figure S2B show that the healthy
subjects had a consistent ICC of 0.8, however, the
treated subjects had much higher ICC at week 2 with
week 4 than that of baseline with either week 2 or
week 4 (p = 0.011 and p = 0.008, respectively). This
demonstrated that for the treated subjects when com-
pared to baseline PBMC, PBMC samples at week 2
and week 4 had greater concordance, confirming an
immediate sipuleucel-T treatment effect.
The three FC distribution curves (PBMC week 2/week

0, week 4/week 0 and week 4/week 2) of the healthy sub-
jects had a similar pattern (Fig. 2a, c), whereas for
treated subjects there was a large shift in the week 4/

week 2 FC curve compared to other two curves (Fig. 2b, d).
We further calculated the proportions of decrease/un-
changed/increase in terms of clone frequency by setting
c = 2. There was a significant increase in the proportion
of unchanged clones between week 2 and week 4, and a
significant drop in the proportion of increased clones
from week 2 to week 4 (Additional file 3: Figure S2C).
This indicated that from baseline to week 2 and week 4,
about 15–25% of the overlapped clone abundance was
enriched and this enrichment remained from week 2
and week 4. FC analysis further implied that the imme-
diate sipuleucel-T treatment effect might enrich the
abundance of a certain group of clonotypes.

Assessment of dynamic changes from PBMC to tissues
revealed that RP tissues became resemblance with week
2 and week 4 PBMC after sipuleucel-T treatment
Our previous finding showed that the TCR sequence
diversity within RP tissue was significantly higher in sub-
jects who received sipuleucel-T treatment compared to
untreated prostate cancer subjects (p = 0.01). To explore
the dynamic change of clonotypes from PBMC to RP
tissue, we calculated the proportion of overlap (Jaccard
coefficient) between tissue and PBMC at each time point
separately for both treated and untreated subjects. Simi-
lar overlap proportions between tissue and PBMC were
observed for the untreated subjects and for that of the
treated subjects at baseline (p = 0.158), but a greater
increase was seen between tissue and PBMC week 2 or
week 4 for the treated subjects (p = 0.008 and 0.016,
respectively) (Fig. 3a).
Comparing to the untreated subjects (Fig. 3b), ICCs of

week 0 PBMC and tissue of the treated subjects were simi-
lar (p = 0.310), but ICC of week 2 or week 4 PBMC with
tissue dramatically increased (p = 0.008 and 0.016, respect-
ively). Moreover, comparing with the untreated subjects
(Fig. 3c), there was a significant increase in the proportion
of unchanged clones from week 2 or week 4 PBMC to the
tissue for the treated subjects (p = 0.032), which implied
that RP tissue resembled at week 2 and week 4 PBMC for
those clones present constantly. There was a significant
drop in the proportion of increased clones from week 2 (or
4) PBMC to the tissue (60–84%) when compared to week
0 PBMC vs. tissue (74–89%) (p = 0.032), indicating about
5–20% of the overlap clones in RP tissue were enriched
immediately after the first treatment. These implied that
sipuleucel-T treatment increased TCR sequence common-
ality between blood and resected prostate tissue in the
treated subjects comparing to the untreated subjects.

DESeq analysis demonstrated sipuleucel-T treatment
induction of that were present in the prostate tissue
For each treated subject, we first calculated the disper-
sion based on each pair of the PBMC samples and
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performed 1 to 1 comparison by modified DESeq (1
vs. 1 in Additional file 4: Table S1). Next we calculated
dispersion on all PBMC samples, and performed pair-
wise comparison (All Samples in Additional file 4:
Table S1), and then compared PBMC at week 2 and 4
with PBMC at baseline. We found, for example, within
the treated subject 24, 127 clones were significantly
changed from week 0 to week 2 (FDR < 0.05), of which
83 (65.4%) of clones were present in the tissue (Fig. 4a).
Comparing log10(tissue count) of the 82 significantly
enriched clones from week 0 to week 2 which also pre-
sented in tissue with mean of log10(tissue count) of all
22350 tissue-present clones (Fig. 4b), we found that
these 82 significantly enriched tissue-present clones
had significantly higher tissue count than the overall
mean (p < 0.001), supporting the hypothesis that
sipuleucel-T induces extravasation of T-cells into the
prostate tissue. We also detected 135 clones signifi-
cantly changed from week 0 to week 4 (FDR < 0.05), of
which 89 (65.9%) of clones were present in the tissue
(Fig. 4c), and the tissue count of those 89 clones also
had significantly higher tissue count than the overall
mean (p < 0.001). Similar results were observed for the
other sipuleucel-T treated subjects (Additional file 4:
Table S2).

Discussion
The proposed analysis pipeline is designed to investigate
two major aspects of the T cell repertoire: diversity and
dynamics, and further perform differential testing for
each clone. Here, a diversity index reflects how much
difference among the TCR repertoire within each sample,
while the dynamics analysis is to evaluate clone abun-
dance change across the samples for the same subject,
moreover, differential testing aims to detect the single clo-
notypes that have significantly different abundance across
samples for the same subject. A public available R soft-
ware “TCR3D” (https://github.com/mlizhangx/TCR-3D) is
developed to implement the proposed workflow.
Based on the preprocessed TCR repertoire data (which

is out of scope of the current paper), starting with
obtaining the number of unique clones and read depth
for each sample, we suggest first assessing the repertoire
diversity. Although Clonality is recommended, calculat-
ing more than two diversity measures is highly recom-
mended to ensure consistent results and a sample can
be considered more diverse if all of its Renyi diversities
(Hill numbers) are higher than in another samples [14].
The number of unique clones and read depth should not
be considered as the basis for an overall conclusion. If a
study has multiple observations available for the same

a b

c d

Fig. 2 The distribution of the pairwise fold change (FC) between PBMC samples (NeoACT study) for one healthy subject (a, c) and one treated
prostate cancer subject (b, d). For clonotype i, FC is calculated by FC ¼ log2

pik
pij
, where k and j are the samples from two different time points for

the same subject. Each curve represents a pair of samples: PBMC.2 vs. PBMC.0 (red), PBMC.4 vs. PBMC.0 (green) and PBMC.4 vs. PBMC.2 (blue). Top
figures (a, b) include the clones present at either of the sample from a pair and bottom figures (c, d) include the clones present at both samples
from a pair (i.e., the overlap clones)

Zhang et al. BMC Bioinformatics  (2017) 18:129 Page 7 of 14

https://github.com/mlizhangx/TCR-3D


a

b

c

Fig. 3 (See legend on next page.)
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subject - usually obtained at different time points (e.g.,
before and after treatment), then dynamics analyses,
such as evaluation of binary similarity measures, morisi-
ta’s distance, ICC, etc., and fold change analysis, are ex-
pected. In addition, when assessing commonality
between different biological compartments consideration
of the inherent variation due to the different biological
mechanism is highly recommended, such as adjusting
the clone frequency by the ratio of read depth, though
we readily acknowledge that more advanced work (such
as computer simulation study) might be warranted to
further address this issue. Note each analysis component
is performed for each single subject separately, to obtain
meaningful scientific inference, we need to further com-
pare the index between different time points or between
different patient groups (Additional file 1: Figure S6A-C)
with a valid statistical test. Furthermore, differential test-
ing needs to be taken into consideration with necessary
modification on normalization and dispersion estima-
tion, especially when replicates are available. DESeq was
applied solely for the illustration purpose. It has been
developed to enable analysis of experiments with small
number of replicates and it is technically possible to
work with experiments without any biological replicated,
which meets our situation that the differential testing of
TCR data can only be done within each subject and
there are very limited or no biological replicates within
each subject. Seyednasrollah et al. [28] summarized and
compared the software packages for detecting differen-
tial expression and stated that other existing methods to
test differential expression require relative larges number
of replicate samples. However, most of the softwares are
applicable in R environment [18], thus are compatible
with our developed R package.
Though there are a number of methods and software

available for immunoglobulin (IG) and TCR profiling
(Additional file 5: Table S3) [29], these computational
methods were mainly used for processing repertoire data
by mapping V, D, J antigen receptor segments to sequen-
cing reads and assembling T- and B-cell clonotypes, and
most of them are not designed to quantify the diversity
and dynamics of the repertoire. For example, miXCR
[30] is a universal framework that processes big

immunome data from raw sequences to quantitated clo-
notypes. The more comprehensive software, LymAnaly-
zer [31], consists of four functional components: VDJ
gene alignment, CDR3 extraction, polymorphism ana-
lysis and lineage mutation tree construction. sciReptor
[32] is a flexible toolkit for the processing and analysis
of antigen receptor repertoire sequencing data at single-
cell level by a relational database. Some of the tools,
such as repgenHMM [33], IMonitor [34], IMEX/IMmu-
nEXplorer [35], Change-O [36], ImmunediveRsity [37],
and VDJtools [38] etc., could also measure repertoire di-
versity, but they only rely on one or two diversity indi-
ces, such as Shannon or Gini diversity. ImmunoSEQ
Analyzer [39] developed by Adaptive Biotechnologies, a
pioneer in leveraging NGS to profile T- and B-cell recep-
tors, provides web-based analysis for TCR data including
estimation of diversity and dynamics indices, though
with limited options; and unfortunately, it is only avail-
able to the customers who have sequencing performed
by Adaptive Biotechnologies. Recently, Nazarov et al.
[40] developed an R package “tcR” to analyze NGS-
based T cell repertoire data, that integrated widely used
methods for individual repertoires analyses and TCR
repertoires comparison, customizable search for clono-
types shared among repertoires, spectratyping, and ran-
dom TCR repertoire generation. However, both
immunoSEQ Analyzer and the “tcR” package do not
provide detailed discussion about the robustness of di-
versity/dynamic indices, lacks the ability to investigate
the unique dynamic nature of this type of sequencing
data, especially between different types of biological
compartments and don’t offer the feature of differential
testing of each individual clone.
We examined the robustness of diversity/dynamics indi-

ces with the number of unique clones whose differences
were mainly driven by low-count clones, and compared
the performance of the diversity/dynamics indices over
the various thresholds used for filtering the sequencing
data (Additional file 6: Document). We found that Clonal-
ity and relative clonality were the matrices that possessed
robustness to different count thresholds (Fig. 5), the
binary similarity measures were greatly influenced by
the lower count clones (Additional file 7: Figure S4),

(See figure on previous page.)
Fig. 3 The dynamics from PBMC to tissue for prostate cancer subjects (NeoACT study). a The proportion of overlap between PBMC and RP tissue.
The traditional formula was used to calculate the overlap proportion of T-cell clonotypes between RP tissue and PBMC at each time point
(PBMC.0- > tissue, PBMC.2- > tissue, PBMC.4- > tissue) for the treated prostate cancer subjects and untreated subjects (PBMC- > tissue). b The
intraclass correlation coefficient (ICC) between RP tissue and PBMC. The ICC was calculated based on the clones present at both RP tissue and
PBMC from the untreated prostate cancer subjects (PBMC- > tissue), or between RP tissue and PBMC at each time point of the treated prostate
cancer subjects (PBMC.0- > tissue, PBMC.2- > tissue, PBMC.4- > tissue). c The binned analysis of fold change in clonal frequency from PBMC to RP
tissue. This fold change analysis only included the clones that present at both tissue and PBMC for the untreated subjects (PBMC- > tissue) or
present at both tissue and PBMC at each week (PBMC.0- > tissue, PBMC.2- > tissue, PBMC.4- > tissue), respectively, for the treated prostate cancer
subjects. From top to the bottom, each panel presents the fraction of the decrease, unchanged and increase clones which correspond to the
adjusted FC of tissue vs. PBMC is less than 0.25, between 0.25 and 4 and greater than 4, respectively. The median and interquartiles are shown
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and Morisita’s distance had better performance when
TCR repertoire only retains the high abundance clones
(Additional file 8: Figure S5). Furthermore, we also per-
formed differential testing on the clones with different
thresholds (detailed results were not shown), which

show that more than 86% of clones detected significant
when applying a threshold of count ≥ 5 were still detect-
able when applying other thresholds (count ≥ 10 ~ 30).
Currently, the TCR data from the vendors (Adaptive
Biotechnologies or other sequencing companies) all

a b

c d

Fig. 4 Significantly differentiated clones detected by DESeq analysis for one treated prostate cancer subject in NeoACT study (FDR < 0.05). a
Tracking plot of the 127 clones that were significantly changed from week 0 to week 2. Green and red lines represent the increased and decreased
clones from baseline PBMC to post-treatment. b Boxplots of log10 of tissue T-cell repertoire clonotype count for the 83 tissue-present clonotypes
that were also significantly changed from week 0 to week 2. The left and the middle boxplots present log10(tissue count) of the clones significantly
decreased (n = 1) or increased (n = 82) from baseline to post-treatment, respectively. The right plot presents all tissue-present clones. c Tracking plot of
the 135 clones that were significantly changed from week 0 to week 4. Green and red lines represent the increased and decreased clones from baseline
PBMC to post-treatment. d Boxplots of log10 of tissue T-cell repertoire clonotype count for the 89 tissue-present clonotypes that were also significantly
changed from week 0 to week 4. The left and the middle boxplots present log10(tissue count) of the clones significantly decreased (n = 0) or increased
(n = 89) from baseline to post-treatment, respectively. The right plot presents all tissue-present clones
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Fig. 5 The influence of the count thresholds on diversity matrices of TCR repertoire in sipuleucel-T treated prostate cancer patients (NeoACT
study). a TCR sequencing data of PBMC samples at week 0 (PBMC.0), week 2 (PBMC.2) and week 4 (PBMC.4) of the five treated prostate cancer
subjects are used for illustration. From top to bottom, each row shows the number of unique clones (Uniques), read depth, the Shannon index,
Gini Simpson, Inverse Simpson (InvSimpson), geometric coefficient of variation (GCV) and Clonality of TCR repertoire. From the left to the right,
each column presents the different threshold of the clonotypes count (original data which is > =2, > = 5, > = 10, > = 15, > = 20, > = 25 and > =30).
The Shannon index, Clonality, Gini Simpson, Inverse Simpson and GCV were obtained by recalculating the clone frequency after filtering the data
with the different cutoffs. b Pairwise relative clonality were calculated as the clonality of PBMC at the later time point divided by that of the earlier
time point, e.g., PBMC.2/0 = clonality of PBMC Week 2 divided by PBMC Week 0. From the left to the right, each column presents the different
threshold of the clonotypes count (original data which is > =2, > = 5, > = 10, > = 15,> = 20, > = 25 and > =30). The subject with triangle shapes
was the example used in Fig. 1c)
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have their own preprocessing steps which may be pro-
prietary. However, we advocate not just working on the
top ranked clones, such as the clones with the count in
top 25%, or the clones with larger abundance (count ≥ 50),
but rather considering possible but necessary filtering on
the data to avoid the potential noises caused by low-count
clones and performing robustness check
TCR diversity and dynamics might someday be used

as predictive biomarkers in cancer immunotherapy.
Therefore, we propose that if testing the treatment effect
is the primary objective, sample size calculation should be
based on a paired t-test or repeated measures ANOVA of
the diversity index, where Clonality is recommended; if
examining the influence of the clinical outcome (such as
the clinical response to the treatment) is the major goal,
sample size calculation should be based on a two-sample
t-test or ANOVA of the dynamic index (BUB or relative
clonality is recommended).
To extend the pipeline, in our next step, we would

perform both manual and automated approaches in
biological annotation such as summarizing the V, D, J
gene families used to construct the TCR to further ex-
plore the biology of the T cell repertoire. Both super-
vised and unsupervised clustering clonotypes within a
sample or across different time points is part of our
future work too, though we recognize that due to the
large number of clonotypes and low overlap caused by
dynamic feature of the TCR sequencing data, finding a
suitable distance measure and an efficient clustering
method is a challenging task.

Conclusions
By using the proposed “3D” analysis pipeline to the real
example, we were able to evaluate the TCR sequence
diversity of each sample and investigated the changes in
abundance of each clonotype across time and between
blood and tumor tissue. Through this approach, we dis-
covered that sipuleucel-T treatment changed the TCR
repertoire in the blood and in prostate tissue. We also
found that the increases in common TCR sequences
between RP tissue and blood after sipuleucel-T treat-
ment supported the hypothesis of a treatment-induced
T cell migration into the prostate tissue. The pipeline is
a thorough analysis of TCR repertoires after primary
sequences extraction from raw sequencing reads. This
paper also provides comprehensive understanding of
the diversity and dynamics indices for TCR sequencing
data with serial time points and for comparing T cells in
multiple compartments in a clinical context to ensure
consistency and reproducibility of post-analysis. Tabular
outputs and visualization tools with a simple enough R
software usage enable scientists and clinicians with little
computational experience to generate results in a well-
presented format.

Additional files

Additional file 1: Figure S6. Results of all ipilimumab treated prostate
caner subjects and separately by long survivors (overall survival > =
23.6 months) and short survivors (overall survival < 23.6 months). (A)
Shannon index of TCR at Week 0 and Week 2. (B) Clonality of TCR at
Week 0 and Week 2. (C) intraclass correlation coefficient of TCR between
Week 0 and Week 2. (D) Morisita’s distance of TCR between Week 0 and
Week 2. (E) Scatter plot of Shannon vs. log10(# of uniques). Pearson
correlation coefficient and corresponding pvalues were calculated. (F)
Scatter plot of Clonality vs. log10(# of uniques). Pearson correlation
coefficient and corresponding pvalues were calculated. (PDF 2080 kb)

Additional file 2: Figure S1. The diversity of TCR from PBMC at week
0, 2 and 4 for the healthy subjects (left) and the treated prostate cancer
subjects (right) in NeoACT study. (A) The clonality of TCR from PBMC at
week 0, 2 and 4 for the healthy subjects (left) and the treated prostate
cancer subjects (right). (B) The geometric coefficient of variation (GCV) of
TCR from PBMC at Week 0, 2 and 4 (PBMC.0, PBMC.2 and PBMC.4) for the
healthy subjects (left) and the treated prostate cancer subjects (right).
(PDF 1774 kb)

Additional file 3: Figure S2. The dynamics of TCR from PBMC across
time course (NeoACT study). (A) The Baroni-Urbani and Buser (BUB) overlap
index of TCR from PBMC across week 0, 2 and 4 (PBMC.0- > PBMC.2,
PBMC.0- > PBMC.4 and PBMC.2- > PBMC.4) for the healthy subjects (left)
and the treated prostate cancer subjects (right). (B) The intraclass correlation
coefficient (ICC) of TCR from PBMC across week 0, 2 and 4 (PBMC.0- > PBMC.2,
PBMC.0- > PBMC.4 and PBMC.2- > PBMC.4) for the healthy subjects (left) and
the treated prostate cancer subjects (right). The ICC was calculated based
on the clones present at both time points of each paired samples (i.e., the
overlap clones). (C) A binned analysis of fold change in clonal frequency for
the healthy subjects (left) and the treated prostate cancer subjects (right),
for example, PBMC.0- > PBMC.2 is the fraction of clones where the ratio of
frequencies at week 2 vs. week 0 is greater than 4 (“Increase”), less than 0.25
(“Decrease”), or between 0.25 and 4 (“Unchanged”), similarly for week 4 vs.
week 0 (PBMC.0- > PBMC.4) and week 4 vs. week 2 (PBMC.2- > PBMC.4). This
fold change analysis only includes the clones that present at both paired
time points (i.e., the overlap clones). The median and interquartiles are
shown. (PDF 1941 kb)

Additional file 4: Table S1. The results of serial 1 vs. 1 comparison by
modified DESeq analysis for 5 treated prostate cancer subjects (24, 21, 16,
13, and 6). We considered 2 different ways of estimating dispersion: 1 vs.
1 uses Sample 1 and Sample 2 to calculate the dispersion; All Samples
uses all available PBMC samples from 3 time points (PBMC.0, PBMC.2 and
PBMC.4) to calculate the dispersion. Subject 6 doesn’t have data at week
4. The number of the significantly differentiated clones between Sample
1 and Sample 2 (FDR<0.05) was listed for each patient and each
comparison. The summary statistics summarized across all 5 patients.
Table S2 The results of comparing PBMC samples of week 0 vs. week 2
and week 4, separately, by modified DESeq analysis for 5 treated prostate
cancer subjects, where the dispersion was calculated based on all three
PBMC samples. Overall mean stands for the average of log10(tissue count)
of all the tissue-present clones. N is the number of the significantly
differentiated (decreased or increased) clones (FDR<0.05). N* is the
number of the significantly differentiated (decreased or increased) tis-
sue-present clones. Mean stands for the average of log10(tissue count) of
the corresponding N* significantly differentiated (decreased or increased)
clones. P was obtained by comparing log10(tissue count) of the N* significantly
differentiated (decreased or increased) tissue-present clones with the overall
mean of log10(tissue count) using t-test. (DOCX 165 kb)

Additional file 5: Table S3. The list of bioinformatics tools to analyze
high-throughput immunological repertoire sequencing data. (DOCX 174 kb)

Additional file 6: Robustness of Diversity/Dynamics Measures
(Additional file 9). (DOCX 115 kb)

Additional file 7: Figure S4. The influence of the count thresholds on
the pairwise binary similarity measures of TCR from PBMC at week 0, 2 and
4 for the treated prostate cancer subjects in NeoACT study. From top to
bottom, each row shows five different types of similarity measures. From
the left to the right, each column presents the different threshold of the
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clonotypes count (original data which is > =2, > = 5, > = 10, > = 15, > =
20, > = 25 and > =30). The subject with triangle shapes was the example
used in Fig. 1c). The median and interquartiles are shown. (PDF 1234 kb)

Additional file 8: Figure S5. The influence of the count thresholds on
the pairwise dynamics indices of TCR from PBMC at week 0, 2 and 4 for
the treated prostate cancer subjects in NeoACT study. From top to bottom,
each row shows the proportion of increase/unchanged/decrease clones
from earlier time point to later time point, and pairwise Morisita’s distance.
From the left to the right, each column presents the different threshold of
the clonotypes count (original data which is > =2, > = 5, > = 10, > = 15, > =
20, > = 25 and > =30). The subject with triangle shapes was the example
used in Fig. 1c). The median and interquartiles are shown. (PDF 1283 kb)

Additional file 9: Figure S3. The scatter plot of the number of unique
clones with the Shannon index, Clonality and Geometric coefficient of
variation (GCV) of TCR repertoire from PBMC (week 0, 2 and 4) of the
five treated prostate cancer subjects in NeoACT study. Pearson correlation
coefficient and corresponding pvalues were calculated for each pair.
(PDF 2882 kb)
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