15 research outputs found

    A re-interpretation of the Triangulum-Andromeda stellar clouds: a population of halo stars kicked out of the Galactic disk

    Full text link
    The Triangulum-Andromeda stellar clouds (TriAnd1 and TriAnd2) are a pair of concentric ring- or shell-like over-densities at large RR (≈\approx 30 kpc) and ZZ (≈\approx -10 kpc) in the Galactic halo that are thought to have been formed from the accretion and disruption of a satellite galaxy. This paper critically re-examines this formation scenario by comparing the number ratio of RR Lyrae to M giant stars associated with the TriAnd clouds with other structures in the Galaxy. The current data suggest a stellar population for these over-densities (fRR:MG<0.38f_{\rm RR:MG} < 0.38 at 95% confidence) quite unlike any of the known satellites of the Milky Way (fRR:MG≈0.5f_{\rm RR:MG} \approx 0.5 for the very largest and fRR:MG>>1f_{\rm RR:MG} >>1 for the smaller satellites) and more like the population of stars born in the much deeper potential well inhabited by the Galactic disk (fRR:MG<0.01f_{\rm RR:MG} < 0.01). N-body simulations of a Milky-Way-like galaxy perturbed by the impact of a dwarf galaxy demonstrate that, in the right circumstances, concentric rings propagating outwards from that Galactic disk can plausibly produce similar over-densities. These results provide dramatic support for the recent proposal by Xu et al. (2015) that, rather than stars accreted from other galaxies, the TriAnd clouds could represent stars kicked-out from our own disk. If so, these would be the first populations of disk stars to be found in the Galactic halo and a clear signature of the importance of this second formation mechanism for stellar halos more generally. Moreover, their existence at the very extremities of the disk places strong constraints on the nature of the interaction that formed them.Comment: 27 pages, 8 figures; published in MNRA

    Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Get PDF
    Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the "classical" limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating, they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies, and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of "Galactoseismology", which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way's own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.Comment: 20 pages, 5 figures, accepted in for publication in a special edition of the journal "Galaxies", reporting the proceedings of the conference "On the Origin (and Evolution) of Baryonic Galaxy Halos", Puerto Ayora, Ecuador, March 13-17 2017, Eds. Duncan A. Forbes and Ericson D. Lope

    Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum-Andromeda Overdensity?

    Full text link
    Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, "A13", first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion of ≲\lesssim 40 km s−1\mathrm{km~s^{-1}}, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance (∼\sim15~kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.Comment: 12 pages, 9 figures. Accepted for publication in Ap

    Probing the Halo From the Solar Vicinity to the Outer Galaxy: Connecting Stars in Local Velocity Structures to Large-Scale Clouds

    Full text link
    (Abridged) This paper presents the first connections made between two local features in velocity-space found in a survey of M giant stars and stellar spatial inhomogeneities on global scales. Comparison to cosmological, chemodynamical stellar halo models confirm that the M giant population is particularly sensitive to rare, recent and massive accretion events. These events can give rise to local observed velocity sequences - a signature of a small fraction of debris from a common progenitor, passing at high velocity through the survey volume, near the pericenters of their eccentric orbits. The majority of the debris is found in much larger structures, whose morphologies are more cloud-like than stream-like and which lie at the orbital apocenters. Adopting this interpretation, the full-space motions represented by the observed velocity features are derived under the assumption that the members within each sequence share a common velocity. Orbit integrations are then used to trace the past and future trajectories of these stars across the sky revealing plausible associations with large, previously-discovered, cloud-like structures. The connections made between nearby velocity structures and these distant clouds represent preliminary steps towards developing coherent maps of such giant debris systems. These maps promise to provide new insights into the origin of debris clouds, new probes of Galactic history and structure, and new constraints on the high-velocity tails of the local dark matter distribution that are essential for interpreting direct detection experiments.Comment: submitted to the Astrophysical Journal, 40 pages, 13 figure

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Identifying Contributions to the Stellar Halo from Accreted, Kicked-Out, and In Situ Populations

    Get PDF
    [Abridged] We present a medium-resolution spectroscopic survey of late-type giant stars at mid-Galactic latitudes of (30∘<∣b∣<60∘^{\circ}<|b|<60^{\circ}), designed to probe the properties of this population to distances of ∼\sim9 kpc. Because M giants are generally metal-rich and we have limited contamination from thin disk stars by the latitude selection, most of the stars in the survey are expected to be members of the thick disk (∼\sim-0.6) with some contribution from the metal-rich component of the nearby halo. Here we report first results for 1799 stars. The distribution of radial velocity (RV) as a function of l for these stars shows (1) the expected thick disk population and (2) local metal-rich halo stars moving at high speeds relative to the disk, that in some cases form distinct sequences in RV-ll space. High-resolution echelle spectra taken for 34 of these "RV outliers" reveal the following patterns across the [Ti/Fe]-[Fe/H] plane: seventeen of the stars have abundances reminiscent of the populations present in dwarf satellites of the Milky Way; eight have abundances coincident with those of the Galactic disk and more metal-rich halo; and nine of the stars fall on the locus defined by the majority of stars in the halo. The chemical abundance trends of the RV outliers suggest that this sample consists predominantly of stars accreted from infalling dwarf galaxies. A smaller fraction of stars in the RV outlier sample may have been formed in the inner Galaxy and subsequently kicked to higher eccentricity orbits, but the sample is not large enough to distinguish conclusively between this interpretation and the alternative that these stars represent the tail of the velocity distribution of the thick disk. Our data do not rule out the possibility that a minority of the sample could have formed from gas {\it in situ} on their current orbits.Comment: 43 pages, 9 figures, 4 tables, published in the Astrophysical Journa

    On the Hunt for the Origins of the Orphan--Chenab Stream: Detailed Element Abundances with APOGEE and Gaia

    Get PDF
    Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan--Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA's Gaia mission (Gaia EDR3) and radial velocity information from the SDSS-IV APOGEE survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 13 stars) of the OC stream in the α\alpha (O, Mg, Ca, Si, Ti, S), odd-Z (Al, K, V), Fe-peak (Fe, Ni, Mn, Co, Cr) and neutron capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a mono-metallic population and have a median metallicity of --1.92~dex with a dispersion of 0.28 dex. Our results also indicate that the α\alpha-elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second generation stars from globular clusters. The detailed chemical pattern of these stars indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ~106^6 M⊙_\odot.Comment: 13 Pages; 4 Figures. Submitted to AAS Journals, comments welcom
    corecore