33 research outputs found

    Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    Get PDF
    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium dystachion SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regards to future strategies for further improvement of photosynthesis in wheat.publishersversionPeer reviewe

    The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports

    Get PDF
    Background: The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies. Methods: Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests. Results: The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.Molecular and Cellular Biolog

    Genetic dissection of the relationships between grain yield components by genome-wide association mapping in a collection of tetraploid wheats

    Get PDF
    Increasing grain yield potential in wheat has been a major target of most breeding programs. Genetic advance has been frequently hindered by negative correlations among yield components that have been often observed in segregant populations and germplasm collections. A tetraploid wheat collection was evaluated in seven environments and genotyped with a 90K SNP assay to identify major and stable quantitative trait loci (QTL) for grain yield per spike (GYS), kernel number per spike (KNS) and thousand-kernel weight (TKW), and to analyse the genetic relationships between the yield components at QTL level. The genome-wide association analysis detected eight, eleven and ten QTL for KNS, TKW and GYS, respectively, significant in at least three environments or two environments and the mean across environments. Most of the QTL for TKW and KNS were found located in different marker intervals, indicating that they are genetically controlled independently by each other. Out of eight KNS QTL, three were associated to significant increases of GYS, while the increased grain number of five additional QTL was completely or partially compensated by decreases in grain weight, thus producing no or reduced effects on GYS. Similarly, four consistent and five suggestive TKW QTL resulted in visible increase of GYS, while seven additional QTL were associated to reduced effects in grain number and no effects on GYS. Our results showed that QTL analysis for detecting TKW or KNS alleles useful for improving grain yield potential should consider the pleiotropic effects of the QTL or the association to other QTLs

    Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status

    No full text
    KEY MESSAGE: This study identifies a small distal region of the 1RS chromosome from rye that has a positive impact on wheat yield. ABSTRACT: The translocation of the short arm of rye (Secale cereale L.) chromosome one (1RS) onto wheat (Triticum aestivum L.) chromosome 1B (1RS.1BL) is used in wheat breeding programs worldwide due to its positive effect on yield, particularly under abiotic stress. Unfortunately, this translocation is associated with poor bread-making quality. To mitigate this problem, the 1RS arm was engineered by the removal and replacement of two interstitial rye segments with wheat chromatin: a distal segment to introduce the Glu-B3/Gli-B1 loci from wheat, and a proximal segment to remove the rye Sec-1 locus. We used this engineered 1RS chromosome (henceforth 1RS(WW)) to develop and evaluate two sets of 1RS/1RS(WW) near isogenic lines (NILs). Field trials showed that standard 1RS lines had significantly higher yield and better canopy water status than the 1RS(WW) NILs in both well-watered and water-stressed environments. We intercrossed the 1RS and 1RS(WW) lines and generated two additional NILs, one carrying the distal (1RS(RW)) and the other carrying the proximal (1RS(WR)) wheat segment. Lines not carrying the distal wheat region (1RS and 1RS(WR)) showed significant improvements in grain yield and canopy water status compared to NILs carrying the distal wheat segment (1RS(WW) and 1RS(RW)), indicating that the 1RS region replaced by the distal wheat segment carries the beneficial allele(s). NILs without the distal wheat segment also showed higher carbon isotope discrimination and increased stomatal conductance, suggesting that these plants had improved access to water. The 1RS(WW), 1RS(WR) and 1RS(RW) NILs have been deposited in the National Small Grains Collection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-014-2408-6) contains supplementary material, which is available to authorized users
    corecore