25 research outputs found

    Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    Get PDF
    BACKGROUND: Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. RESULTS: Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. CONCLUSIONS: Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently

    Peripheral Immune Cell Populations Associated with Cognitive Deficits and Negative Symptoms of Treatment-Resistant Schizophrenia.

    Get PDF
    BACKGROUND: Hypothetically, psychotic disorders could be caused or conditioned by immunological mechanisms. If so, one might expect there to be peripheral immune system phenotypes that are measurable in blood cells as biomarkers of psychotic states. METHODS: We used multi-parameter flow cytometry of venous blood to quantify and determine the activation state of 73 immune cell subsets for 18 patients with chronic schizophrenia (17 treated with clozapine), and 18 healthy volunteers matched for age, sex, BMI and smoking. We used multivariate methods (partial least squares) to reduce dimensionality and define populations of differentially co-expressed cell counts in the cases compared to controls. RESULTS: Schizophrenia cases had increased relative numbers of NK cells, naïve B cells, CXCR5+ memory T cells and classical monocytes; and decreased numbers of dendritic cells (DC), HLA-DR+ regulatory T-cells (Tregs), and CD4+ memory T cells. Likewise, within the patient group, more severe negative and cognitive symptoms were associated with decreased relative numbers of dendritic cells, HLA-DR+ Tregs, and CD4+ memory T cells. Motivated by the importance of central nervous system dopamine signalling for psychosis, we measured dopamine receptor gene expression in separated CD4+ cells. Expression of the dopamine D3 (DRD3) receptor was significantly increased in clozapine-treated schizophrenia and covaried significantly with differentiated T cell classes in the CD4+ lineage. CONCLUSIONS: Peripheral immune cell populations and dopaminergic signalling are disrupted in clozapine-treated schizophrenia. Immuno-phenotypes may provide peripherally accessible and mechanistically specific biomarkers of residual cognitive and negative symptoms in this treatment-resistant subgroup of patients

    Leucocyte subset-specific type 1 interferon signatures in SLE and other immune-mediated diseases.

    Get PDF
    OBJECTIVES: Type 1 interferons (IFN-1) are implicated in the pathogenesis of systemic lupus erythematosus (SLE), but most studies have only reported the effect of IFN-1 on mixed cell populations. We aimed to define modules of IFN-1-associated genes in purified leucocyte populations and use these as a basis for a detailed comparative analysis. METHODS: CD4+ and CD8+ T cells, monocytes and neutrophils were purified from patients with SLE, other immune-mediated diseases and healthy volunteers and gene expression then determined by microarray. Modules of IFN-1-associated genes were defined using weighted gene coexpression network analysis. The composition and expression of these modules was analysed. RESULTS: 1150 of 1288 IFN-1-associated genes were specific to myeloid subsets, compared with 11 genes unique to T cells. IFN-1 genes were more highly expressed in myeloid subsets compared with T cells. A subset of neutrophil samples from healthy volunteers (HV) and conditions not classically associated with IFN-1 signatures displayed increased IFN-1 gene expression, whereas upregulation of IFN-1-associated genes in T cells was restricted to SLE. CONCLUSIONS: Given the broad upregulation of IFN-1 genes in neutrophils including in some HV, investigators reporting IFN-1 signatures on the basis of whole blood samples should be cautious about interpreting this as evidence of bona fide IFN-1-mediated pathology. Instead, specific upregulation of IFN-1-associated genes in T cells may be a useful biomarker and a further mechanism by which elevated IFN-1 contributes to autoimmunity in SLE.SMF holds a Translational Medicine and Therapeutics PhD studentship from the Wellcome Trust and GlaxoSmithKline and has also received funding for this work from the Addenbrooke’s Charitable Trust. KGCS is the Khoo Oon Teik Professor of Nephrology, National University of Singapore. Singapore recruitment was supported by the Khoo Investigator Grant from the Duke-NUS Graduate Medical School, Singapore, and by National Medical Research Council of Singapore grants (NMRC/1164/2008 and IRG07nov089). This work was also supported by UK National Institute of Health Research Cambridge Biomedical Research Centre, the Lupus Research Institute (Distinguished Innovator Award, KGCS), the Medical Research Council UK (programme grant MR/L019027/1) and the Wellcome Trust (programme grant 083650/Z/07/Z and project grant 094227/Z/10/Z). The Cambridge Institute for Medical Research is in receipt of Wellcome Trust Strategic Award 079895.This is the final version of the article. It first appeared from BMJ Group via https://doi.org/10.1136/rmdopen-2015-00018

    NBEAL2 is required for neutrophil and NK cell function and pathogen defense.

    Get PDF
    Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells. Phenotyping of Nbeal2-deficient neutrophils showed a severe reduction in granule contents across all granule subsets. Despite this, Nbeal2-deficient neutrophils had an enhanced phagocyte respiratory burst relative to Nbeal2-expressing neutrophils. This respiratory burst was associated with increased expression of cytosolic components of the NADPH oxidase complex. Nbeal2-deficient NK cells were also dysfunctional and showed reduced degranulation. These abnormalities were associated with increased susceptibility to both bacterial (Staphylococcus aureus) and viral (murine CMV) infection in vivo. These results define an essential role for NBEAL2 in mammalian immunity

    Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    Get PDF
    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox\textit{phox} and p22phox\textit{phox} subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643\textit{bc017643}, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox\textit{phox} and p22phox\textit{phox}. Consequently, Eros\textit{Eros}-deficient mice quickly succumb to infection. Eros\textit{Eros} also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros\textit{Eros} is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.D.C. Thomas was funded by a Wellcome Trust/CIMR Next Generation Fellowship, a National Institute for Health Research (NIHR) Clinical Lectureship, and a Starter Grant for Clinical Lecturers (Academy of Medical Sciences). K.G.C. Smith was funded by funded by the Medical Research Council (program grant MR/L019027) and is a Wellcome Investigator and a NIHR Senior Investigator. S. Clare and G. Dougan were funded by the Wellcome Trust (grant 098051). The Cambridge Institute for Medical Research is in receipt of a Wellcome Trust Strategic Award (079895). J.C.L is funded by a Wellcome Intermediate Clinical Fellowship 105920/2/14/2

    Biological and clinical insights from a randomised phase II study of an anti-oncostatin M monoclonal antibody in systemic sclerosis

    No full text
    Objectives The cytokine oncostatin M (OSM) is implicated in the pathology of systemic sclerosis (SSc). Inhibiting OSM signalling using GSK2330811 (an anti-OSM monoclonal antibody) in patients with SSc has the potential to slow or stop the disease process. Methods This multicentre, randomised, double-blind, placebo-controlled study enrolled participants aged ≥18 years with active diffuse cutaneous SSc. Participants were randomised 3:1 (GSK2330811: placebo) in one of two sequential cohorts to receive GSK2330811 (Cohort 1: 100 mg; Cohort 2: 300 mg) or placebo subcutaneously every other week for 12 weeks. The primary end point was safety; blood and skin biopsy samples were collected to explore mechanistic effects on inflammation and fibrosis. Clinical efficacy was an exploratory end point. Results Thirty-five participants were randomised to placebo (n = 8), GSK2330811 100 mg (n = 3) or 300 mg (n = 24). Proof of mechanism, measured by coordinate effects on biomarkers of inflammation or fibrosis, was not demonstrated following GSK2330811 treatment. There were no meaningful differences between GSK2330811 and placebo for any efficacy endpoints. Safety and tolerability of GSK2330811 were not favourable in the 300 mg group, with on-target, dose-dependent adverse events relating to decreases in haemoglobin and platelet count that were not observed in the 100 mg or placebo groups. Conclusion Despite a robust and novel experimental medicine approach and evidence of target engagement, anticipated SSc-related biologic effects of GSK2330811 were not different from placebo and safety was unfavourable, suggesting OSM inhibition may not be a useful therapeutic strategy in SSc. Trial registration number ClinicalTrials.gov registration number: NCT03041025, EudraCT registration number: 2016-003417-95
    corecore