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ABSTRACT
Objectives: Type 1 interferons (IFN-1) are implicated
in the pathogenesis of systemic lupus erythematosus
(SLE), but most studies have only reported the effect
of IFN-1 on mixed cell populations. We aimed to define
modules of IFN-1-associated genes in purified
leucocyte populations and use these as a basis for a
detailed comparative analysis.
Methods: CD4+ and CD8+ T cells, monocytes and
neutrophils were purified from patients with SLE, other
immune-mediated diseases and healthy volunteers and
gene expression then determined by microarray.
Modules of IFN-1-associated genes were defined using
weighted gene coexpression network analysis. The
composition and expression of these modules was
analysed.
Results: 1150 of 1288 IFN-1-associated genes were
specific to myeloid subsets, compared with 11 genes
unique to T cells. IFN-1 genes were more highly
expressed in myeloid subsets compared with T cells. A
subset of neutrophil samples from healthy volunteers
(HV) and conditions not classically associated with
IFN-1 signatures displayed increased IFN-1 gene
expression, whereas upregulation of IFN-1-associated
genes in T cells was restricted to SLE.
Conclusions: Given the broad upregulation of IFN-1
genes in neutrophils including in some HV,
investigators reporting IFN-1 signatures on the basis of
whole blood samples should be cautious about
interpreting this as evidence of bona fide IFN-1-
mediated pathology. Instead, specific upregulation of
IFN-1-associated genes in T cells may be a useful
biomarker and a further mechanism by which elevated
IFN-1 contributes to autoimmunity in SLE.

INTRODUCTION
Systemic lupus erythematosus (SLE) has been
linked to markedly increased levels of circulat-
ing type 1 interferons (IFN-1) since the late
1970s. IFN-1 are a group of related cytokines
with potent capacity to initiate an antiviral

response. Therapeutic interferon-α neutralis-
ing monoclonal antibodies are under active
evaluation and much effort has gone into
defining the coordinated effects of IFN-1 on
whole blood and peripheral blood mono-
nuclear cells (PBMC).1 Less is known about
the effects of IFN-1 on gene expression in
individual immune cell populations in SLE.
The primary action of IFN-1 on myeloid

cells in vitro is to stimulate the activation and
differentiation of dendritic cells, inducing
them to upregulate class 1 major histocom-
patibility complex (MHC) and costimulatory
molecules.2 Their action on T cells, however,

Key messages

What is already known about this subject?
▸ Upregulation of type 1 interferon

(IFN-1)-associated genes in peripheral blood
leucocytes of patients with systemic lupus ery-
thematosus (SLE) is well described, but studies
to date primarily use mixed cell populations.

What does this study add?
▸ This study finds differences in the pattern of

upregulation of IFN-1-associated genes between
the major leucocyte subsets (CD4+ and CD8+ T
cells, monocytes and neutrophils).

▸ A subset of neutrophil samples displayed
increased IFN-1-associated gene expression in
healthy volunteers and conditions not classically
associated with IFN-1, whereas upregulation of
IFN-1-associated genes in T cells was found to
be much more specific for SLE.

How might this impact on clinical practice?
▸ Whole blood assays of IFN-1-associated gene

expression should be avoided because of the
lack of specificity of the upregulation of
IFN-1-associated genes and the potential for
confounding by changes in whole blood cellular
composition.
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is context dependent. For example, prolonged exposure
to IFN-1 prior to activation inhibits proliferation,
whereas T cells exposed to IFN-1 at activation mount a
robust proliferative response. Although IFN-1 acts classic-
ally to promote an antiviral TH1 response, in other set-
tings IFN-1 demonstrably inhibit both TH1 and TH17
responses.3–5 Which of these effects of IFN-1 are domin-
ant in immune cell populations in SLE remains unclear.
Certainly, a broad activation signature has been
described in the CD4+ T cell in SLE, whereas
IFN-1-inducible gene expression in monocytes more
closely mirrors that observed for PBMC.6 However, this
is based on small studies with subset-specific
IFN-1-inducible genes either defined by their upregula-
tion in SLE or by short-term IFN-1 stimulation experi-
ments, potentially missing effects related to the
leucocyte subset or chronicity of IFN-1 signalling.6–8

We use an unsupervised, data-driven approach to
define modules of IFN-1-associated genes in individual
leucocyte subsets. This distinguishes it from similar prior
studies such as that of Lyons et al,6 which instead
compare lists of genes differentially expressed in SLE
with published gene lists to infer IFN-1 signalling. These
modules then form the basis for an analysis of
IFN-1-associated gene expression, in which we show that
while IFN-1 genes are upregulated in neutrophils in a
subset of patients across a range of immune-mediated
diseases and some healthy volunteers, upregulation of
IFN-1-associated genes in T cells is largely restricted to
patients with SLE.

METHODS
Study populations
Consenting patients with SLE (American College of
Rheumatology (ACR) classification)9 receiving minimal
immunosuppression (ie, <10 mg prednisolone/day or
<50 mg azathioprine/day, without rituximab or cytotoxics
within the preceding 3 months), anti-neutrophil cytoplas-
mic antibody (ANCA)-associated vasculitis (AAV) and
inflammatory bowel disease (IBD) were recruited during
active disease (as described in references 10 and 11).
Patients with Behçet’s syndrome were also recruited
during active disease (see online supplementary tables S1
and S2). Patients with SLE were also recruited from the
National University Hospital in Singapore to the same cri-
teria, and a further cross-sectional cohort from a rheuma-
tology outpatient clinic at Singapore General Hospital.12

Ethical approval for the Cambridge cohort was from East
of England—Cambridge Central Research Ethics
Committee and for the Singapore cohort was from the
Domain Specific Review Board of the National
Healthcare Group. Local, ethnically matched healthy
volunteers were also recruited at each centre.

Sample processing
Blood samples were processed as described.12 In brief,
PBMC were obtained using density gradient

centrifugation. Half underwent sequential positive selec-
tion using CD14+ and CD4+ microbeads (Miltenyi) to
yield monocytes and CD4+ T cells. The remainder under-
went positive selection using CD19+ and CD8+ microbe-
ads (Miltenyi) to yield CD8+ T cells. Neutrophils were
isolated from the red cell pellet by lysis followed by CD16+
microbead (Miltenyi) selection. Separation purities were
monitored using flow cytometry as previously reported.10

Lysed samples were kept in RLT buffer (Qiagen) at −80°
C until required, and then RNA was extracted using the
AllPrep Mini kit (Qiagen) and hybridised to Affymetrix
HuGene 1.1 microarrays according to the manufacturer’s
protocols. Singaporean samples were processed in
Singapore using the same protocol and then shipped to
Cambridge as lysed samples in RLT buffer, with compar-
able separation purities and RNA quality.

Bioinformatics
Microarrays were preprocessed together and gene
modules derived using weighted gene coexpression
network analysis (WGCNA) (see online supplementary
information).13 Multiple disease cohorts were included
in order to improve the specificity of the resulting IFN-1
gene modules in each leucocyte subset, which were iden-
tified by comparison to the signature in Yao et al,14

chosen for its specificity as described in the online sup-
plementary information. An ‘interferon score’ for each
module was defined as the first principal component of
scaled expression of module genes. The expression of
genes belonging to IFN-1 modules in all cell subsets was
explored using hierarchical clustering (scaled by gene)
with a Euclidean distance metric.

Other statistical methods
All data analysis was performed in R (http://www.
r-project.org). As an exploratory analysis, no formal
sample size estimation was required. Non-parametric sta-
tistics were used, with an α value of 0.05 being consid-
ered significant.

RESULTS
Leucocyte subset-specific IFN-1 gene modules
In total, 1065 gene expression arrays from 385 discrete
patients across seven immune-mediated conditions and
four leucocyte subsets were included in the analysis (see
online supplementary tables S1 and S2). WGCNA was
applied to this data set to identify gene modules of coex-
pressed genes within each leucocyte subset as described
in the online supplementary information. In brief,
genes were assigned to modules using hierarchical clus-
tering applied to a distance metric based on weighted
gene–gene correlations. A measure of the degree to
which a given gene belongs to a given module (ie,
module membership score) was obtained by considering
the correlation of a gene’s individual expression profile
with that of the module overall. Even though genes are
assigned to modules based on similarity of expression
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profile, within each module there is still usually a range
of module membership scores.
Within each leucocyte subset, one module clearly

represented IFN-1 gene expression (ie, IFN-1 module).
This was identified by (1) the number of genes from a
published 21-gene IFN-1 signature, chosen for its specifi-
city, that were included in the module and (2) the asso-
ciation of increased module expression with a diagnosis
of SLE (figure 1A, B). As an additional check, we con-
firmed that IFN-1 module expression correlated strongly
with a curated IFN-1 score (ie, the mean expression of
genes in the 21-gene IFN-1 signature, using data from
the same leucocyte subset, figure 1C). Although a
second module of 26 genes in neutrophils also corre-
lated well with a diagnosis of SLE (figure 1B), it did not
correlate well with the curated IFN-1 score (Spearman
r=0.23) and only contained genes suggestive of broader
cellular activation (ie, FOS, JUN, CCL3, CCL4, CXCL1,
CXCL8, PTGS2).
Overall, 1288 genes belonged to an IFN-1 module in

at least one leucocyte subset, with module assignments
and module membership scores listed in online
supplementary table S3. Sixty-seven of these 1288 genes
were IFN-1-associated in all (‘core IFN-1 genes’),

whereas the majority of IFN-1-associated genes were
unique to myeloid subsets (1150 genes), compared with
only 11 genes unique to T cells (ABCG2, CYP2J2, FCRL3,
IKBKE, IRS1, LINC01260, PSD3, RBMS3, TRAK2,
YEATS2, NKAIN1; figure 2A). Although this difference
was partly driven by substantially more genes with lower
module membership scores in the myeloid IFN-1
modules (ie, lower correlation with IFN-1 expression),
for any given level of module membership score there
were more genes in the myeloid IFN-1 modules than in
the T cell IFN-1 modules (figure 2B). In other words, a
broader range of genes were upregulated in vivo by
chronic IFN-1 exposure in myeloid leucocyte subsets
than in T cells.
We considered the possibility that the substantially

smaller T cell IFN-1 modules reflected a lack of expres-
sion of IFN-1 genes in this cell subset. Although gene
microarrays return a relative, not absolute, measure of
expression, non-expressed genes tend to have low vari-
ance across samples and lower expression levels.
Variance (as a mean absolute deviation) and median
expression are plotted in figure 2C for genes belonging
to the IFN-1 module in each leucocyte subset (red)
against a background of all genes (blue). Figure 2D

Figure 1 The identification of leucocyte subset-specific type 1 interferon (IFN-1) modules. (A) A bar chart showing the number

of genes belonging to a published 21-gene IFN-1 signature14 contained in each of the gene modules identified by the weighted

gene coexpression network analysis (WGCNA) algorithm in each leucocyte subset. (B) Spearman correlation coefficient for the

correlation of gene modules in each leucocyte subset with a diagnosis of systemic lupus erythematosus (SLE) (coded 0,1). The

IFN-1-associated gene module is highlighted in red. (C) For all samples in the analysis, regardless of diagnosis, the correlation of

IFN-1-associated module expression with a curated interferon score based on the mean expression of genes in the published

21-gene IFN-1 signature.
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shows the same for genes belonging to an IFN-1 module
in at least one leucocyte subset but not the leucocyte
subset depicted. As can be seen, many IFN-1 genes that
are not IFN-1 associated in CD4+ and CD8+ T cells (ie,
figure 2D, first 2 panels) would still appear to have T
cell expression.
Subset-specific IFN-1 gene modules were also com-

pared with published whole blood IFN-1 gene modules,
particularly those of Chiche et al.15 We found that the
differing thresholds for expression of the whole blood
modules described in that study might also relate to dif-
ferences in the leucocyte subset-specific transcriptional
response to IFN-1 as well as differences in response to

IFN-1 and IFN-2, as hypothesised (see online
supplementary figure S1).

Core IFN-1 genes are more highly expressed in myeloid
subsets
We sought to identify patterns in the expression of the
67 core genes belonging to IFN-1 modules in each
leucocyte subset. First, we examined their basal expres-
sion in healthy volunteers. Using only the scaled expres-
sion of these 67 genes, we found that lymphocyte,
monocyte and neutrophil samples clustered separately,
reflecting the higher expression of many core IFN-1
genes in myeloid, and particularly neutrophil, subsets

Figure 2 Properties of leucocyte subset-specific type 1 interferon (IFN-1) modules. (A) A Venn diagram showing overlap in

membership of each of the four leucocyte subset-specific IFN-1 gene modules. (B) Distribution of module membership scores for

genes in each of the leucocyte subset-specific IFN-1 modules. (C) MA plots depicting median absolute deviation (MAD) against

median gene expression for genes in each of the subset-specific IFN-1 modules (red points). The distribution of MAD against

median gene expression for all genes in the analysis is shown in blue. (D) MA plots as in (C), except that they depict the MAD

versus median expression for genes belonging to at least one IFN-1 module, but not in the leucocyte subset shown (yellow

points). Expression values are expressed in arbitrary units.
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(figure 3A). We confirmed this by examining the
median expression of these genes by leucocyte subset
and diagnosis (figure 3B). Median expression of core
IFN-1 genes was increased in myeloid subsets compared
with lymphoid subsets in healthy volunteers (HV) and
SLE, with median expression in SLE being greater than
that in HV for each leucocyte subset. We also examined
the range of expression of these core IFN-1 genes,
finding that CD4+ and CD8+ T cells from SLE samples
had a much greater range of expression than when com-
pared with HV and with SLE myeloid cells (figure 3C).
These differences remained when stratified by centre
(see online supplementary figure S2). In a subanalysis,
we found that the median core IFN-1 gene expression

was greater in neutrophils from healthy volunteers in
Singapore than in Cambridge (figure 3D, see online
supplementary figure S3), but as samples were not pro-
spectively matched by centre, this observation requires
validation (see online supplementary table S4).

Specificity of the IFN-1 signature varies by leucocyte
subset
The IFN-1 module expression in each leucocyte subset
was compared between immune-mediated conditions.
Increased module expression was observed in most, but
not all, of the SLE samples regardless of leucocyte
subset. However, the upregulation of IFN-1 module
expression in CD4+ and CD8+ T cell samples from

Figure 3 Core type 1 interferon (IFN-1)-associated genes are more highly expressed in myeloid subsets. (A) A heat map

showing the scaled (by gene) expression in healthy volunteers of 67 core IFN-1 genes (ie, genes belonging to IFN-1 modules in

all leucocyte subsets). Samples are in columns and genes in rows. Order in each is determined by hierarchical clustering (Ward’s

method) using a Euclidean distance metric. Leucocyte subset, cohort and array batch are shown as coloured bands above the

main heat map. Box plots showing the distribution of median gene expression values (B) and median absolute deviation (C) for

each of 67 core IFN-1 genes in healthy volunteers and patients with systemic lupus erythematosus (SLE), stratified by leucocyte

subset. (D) Median core IFN-1 gene expression in neutrophil samples, stratified by centre. Wilcoxon p value is shown.
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patients with SLE compared with other samples was pro-
portionally greater than that observed in myeloid
subsets, resulting in a cleaner separation of these SLE
samples from other diagnoses (figure 4A, B). This partly
reflects a greater spread of IFN-1 module expression in
monocyte and neutrophil samples across all diagnostic
categories, to the extent that a subset of neutrophil and
monocyte samples from healthy volunteers and patients
with IBD, AAV and Behçet’s syndrome displayed IFN-1
module expression levels comparable to that of SLE
samples (figure 4A, B). We explored whether this was
confounded by differing IFN-1 inducible genes in each
subset, or by differing samples used in each cell subset,
and found neither of these factors to be important (see
online supplementary figure S4A, B).
A threshold for elevated IFN-1 module expression in

each leucocyte subset was set on the basis of the 99th
centile of IFN-1 module expression in HV (after outliers,
defined as those samples with an adjusted normal

p value <0.001, were removed), as shown by the dashed
lines in figure 4A. We found that by this method the pro-
portion of SLE samples considered IFN-1 high varied
considerably from 75% for CD8+ T cell samples to 19%
for neutrophils. In each subset, a variable, but small,
proportion of samples from patients with other diagno-
ses was also found to be IFN-1 high.

DISCUSSION
In this in vivo study of IFN-1-associated genes in T cells,
monocytes and neutrophils, we found higher expression
of core IFN-1-associated genes in neutrophils and mono-
cytes, compared with T cells in healthy volunteers and in
SLE. We also found that neutrophils and monocytes spe-
cifically upregulate a substantially broader range of
genes than T cells in response to circulating IFN-1.
Conversely, we found that IFN-1 module expression in
patients with SLE overlapped that of patients with

Figure 4 The specificity of an IFN-1 signature varies by leucocyte subset. (A) IFN-1 module expression by diagnosis for the

four leucocyte subsets. Short black horizontal lines indicate the median of each group, and the dotted red horizontal lines

indicate the threshold used for elevated IFN-1 module expression (see text). p Values (Kruskal-Wallis) are shown in each panel,

testing for differences by diagnosis. Where differences are significant overall, significant pairwise differences (Wilcoxon test, with

Holm correction) are shown above. *p<0.05, **p<0.005, ***p<0.0005. (B) Mean and SEM is shown for the same data as (A),

stratified by diagnosis and leucocyte subset. (C) Proportion of samples within each diagnostic category with elevated IFN-1

module expression. IBD, inflammatory bowel disease; IFN-1, type 1 interferon; SLE, systemic lupus erythematosus.
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Behçet’s syndrome, AAV and IBD in neutrophil and
monocyte samples to a much greater extent than in T
cells. The overlap appeared due to a broader range of
IFN-1 module expression in neutrophil samples from
healthy volunteers and diseases not usually thought to
be IFN-1 mediated (ie, AAV6 16). This meant that com-
paratively few neutrophil samples were considered
IFN-high when using a cut-off based on the upper limit
of IFN-1 module expression in healthy volunteers. Given
the high sensitivity of this subset to a range of inflamma-
tory stimuli, we wonder whether this may reflect the
ability of even small levels of circulating IFN-1 to stimu-
late the downstream transcription of neutrophil
IFN-1-associated genes.17 18

Indeed, our finding of increased core IFN-1-associated
gene expression in healthy volunteer myeloid samples
compared with T cells is consistent with studies high-
lighting the importance of basal IFN-1 signalling for
maintaining myeloid populations and for priming an
effective innate immune response; studies of Ifnar and
Ifnb knockout mice would suggest that basal IFN-1 signal-
ling appears less important for T cell populations.19 20

We hypothesise that prior priming by basal IFN-1 signal-
ling is one factor that allows myeloid cells to rapidly
mobilise a broader range of IFN-1 genes and generate
higher gene expression levels of core IFN-1-associated
genes compared with T cells.
In our cohort, we found that IFN-1 gene expression in

neutrophils was higher in Singaporean healthy volun-
teers than their UK-based counterparts. While as a post
hoc subanalysis it requires replication, this is an interest-
ing observation, given that South-East Asia is a region
with an increased prevalence of SLE: increased IFN-1
signalling in healthy volunteers may predispose to the
development of SLE, as has been recently described for
type 1 diabetes mellitus.21

The highest levels of IFN-1 module expression in T
cells were only found in SLE. Given the well-described
association between hypomethylation and increased gene
expression, this would be consistent with studies report-
ing DNA hypomethylation near IFN-1-associated genes in
CD4+ T cells from patients with SLE.22 Conceivably,
increased IFN-1 module expression in T cells may also
reduce the threshold for their activation, facilitating loss
of tolerance and providing another mechanism by which
elevated IFN-1 contributes to the development of auto-
immunity in SLE. Regardless of the mechanism, this
observation suggests that a T cell-specific assay of IFN-1
gene expression may provide a cleaner read-out of IFN-1
exposure in SLE than a whole blood assay.
This analysis extends a small number of prior studies

examining IFN-1 in leucocyte subpopulations by consid-
ering additional leucocyte subsets and using more
samples.7 23 By using WGCNA to define IFN-1 modules,
we avoided assumptions about module size or compos-
ition and additional disease cohorts allowed us to study
IFN-1 gene expression across a range of conditions.
Finally, we used a protocol shown to minimally affect in

vivo gene expression; some prior studies of IFN-1 gene
expression in leucocyte subsets in SLE used a protocol
that, by maintaining cells in culture overnight, may have
introduced substantial ex vivo differences and flattened
existing ones.23

In summary, we found that although the neutrophil
transcriptional response to IFN-1 involved the largest
number of genes and the highest expression of core
IFN-1-associated genes, IFN-1 gene expression in neutro-
phils lacked specificity for traditionally IFN-1-mediated
conditions. We also found that an interferon signature
in T cells was comparatively restricted to SLE samples,
hypothesising that this may contribute to the loss of tol-
erance in this condition. The clinical significance of
these observations is that researchers and clinicians
reporting IFN-1 signatures on the basis of whole blood
samples (with a large and variable proportion of neutro-
phils present) should be cautious about interpreting this
as evidence of bona fide IFN-1-mediated pathology.24 25

Instead, we would argue that the presence of an IFN-1
signature should be determined using at least PBMC, or
perhaps even separated T cells.
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