20 research outputs found

    The Influence of Natural Barriers in Shaping the Genetic Structure of Maharashtra Populations

    Get PDF
    BACKGROUND: The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations

    Bioenergetics and Permeability Transition Pore Opening in Heart Subsarcolemmal and Interfibrillar Mitochondria: Effects of Aging and Lifelong Calorie Restriction

    No full text
    Loss of cardiac mitochondrial function with age may cause increased cardiomyocyte death through mitochondria-mediated release of apoptogenic factors. We investigated ventricular subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial bioenergetics and susceptibility towards Ca2+-induced permeability transition pore (mPTP) opening with aging and lifelong calorie restriction (CR). Cardiac mitochondria were isolated from 8-, 18-, 29- and 37-month-old male Fischer 344 × Brown Norway rats fed either ad libitum (AL) or 40% calorie restricted diets. With age, H2O2 generation did not increase and oxygen consumption did not significantly decrease in either SSM or IFM. Strikingly, IFM displayed an increased susceptibility towards mPTP opening during senescence. In contrast, Ca2+ retention capacity of SSM was not affected by age, but SSM tolerated much less Ca2+ than IFM. Only modest age-dependent increases in cytosolic caspase activities and cytochrome c levels were observed and were not affected by CR. Levels of putative mPTP-modulating components: cyclophilin-D, the adenine nucleotide translocase (ANT), and the voltage-dependent ion channel (VDAC) were not affected by aging or CR. In summary, the age-related reduction of Ca2+ retention capacity in IFM may explain the increased susceptibility to stress-induced cell death in the aged myocardium

    Structural, Morphological and Elemental Analysis of Selectively Etched and Exfoliated Ti3AlC2 MAX Phase

    No full text
    In the present research major focus is on the synthesis of materials that can be easily used in small portable devices and as energy storage devices. Here we focused on a new family of 2D materials Ti3C2 (MXenes). Ti3AlC2 (MAX phase) was intercalated using selective etching of aluminium present in the MAX phase. The etching was done using HF in combination with HCl followed by delaminated in DMSO medium using ultrasonication. The synthesized samples were physically characterized via XRD, SEM, and EDX. The XRD diffractogram confirms the formation of MXene through its characteristic plane (002) arising at 2θ~9°. The morphological study revealed the stacked layered sheet like structure obtained through SEM. The elemental confirmation of removal of aluminium was done as indicated by EDX spectroscopy

    Estimation of Tau and Phosphorylated Tau181 in Serum of Alzheimer's Disease and Mild Cognitive Impairment Patients.

    No full text
    The elevated level of cerebrospinal fluid (CSF) Tau and phosphorylated Tau181 (p-Tau181) proteins are well established hallmarks of Alzheimer's disease (AD). Elevated level of p-Tau181 can differentiate AD from other neurodegenerative disease. However, the expression level of these proteins in serum of AD patient is not well set up. This study sought to evaluate the level of Tau and p-Tau181 in serum of AD, and mild cognitive impairment (MCI) patients for an alternative approach to establish protein-based markers by convenient way. Blood samples were collected from 39 AD patients, 37 MCI patients and 37 elderly individuals as controls. The levels of Tau and p-Tau181 in the serum of the different groups were measured by label free real time Surface Plasmon Resonance technology by using specific antibodies, and were further confirmed by the conventional western blot method. An appropriate statistical analysis, including Receiver Operating Characteristic (ROC), was performed. The concentrations of serum Tau and p-Tau181 were significantly higher (p<0.00001) in AD (Tau; 47.49±9.00ng/μL, p-Tau181; 0.161±0.04 ng/μL) compared to MCI (Tau; 39.26±7.78 ng/μL, p-Tau181; 0.135±0.02 ng/μL) and were further higher compared to elderly controls (Tau; 34.92±6.58 ng/μL, p-Tau181; 0.122±0.01 ng/ μL). A significant (p<0.0001) downhill correlation was found between Tau as well as p-Tau181 levels with HMSE and MoCA score. This study for the first time reports the concentration of Tau and p-Tau181 in serum of AD and MCI patients. The cutoff values of Tau and p-Tau181 of AD and MCI patients with sensitivity and specificity reveal that serum level of these proteins can be used as a predictive marker for AD and MCI
    corecore