1,747 research outputs found
Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage
Background Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Findings Using [11C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. Conclusions These findings support a link between axonal damage and persistent inflammation after brain injury
Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori comprise two geographically widespread types, m1 and m2, and have evolved through limited recombination
Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori vary, particularly in their mid region (which may be type m1 or m2) and their signal peptide coding region (type s1 or s2). We investigated nucleotide diversity among vacA alleles in strains from several locales in Asia, South America, and the USA. Phylogenetic analysis of vacA mid region sequences from 18 strains validated the division into two main groups (m1 and m2) and showed further significant divisions within these groups. Informative site analysis demonstrated one example of recombination between m1 and m2 alleles, and several examples of recombination among alleles within these groups. Recombination was not sufficiently extensive to destroy phylogenetic structure entirely. Synonymous nucleotide substitution rates were markedly different between regions of vacA, suggesting different evolutionary divergence times and implying horizontal transfer of genetic elements within vacA. Non-synonymous/synonymous rate ratios were greater between m1 and m2 sequences than among m1 sequences, consistent with m1 and m2 alleles encoding functions fitting strains for slightly different ecological niches
The Malagarasi River Does Not Form an Absolute Barrier to Chimpanzee Movement in Western Tanzania
The Malagarasi River has long been thought to be a barrier to chimpanzee movements in western Tanzania. This potential geographic boundary could affect chimpanzee ranging behavior, population connectivity and pathogen transmission, and thus has implications for conservation strategies and government policy. Indeed, based on mitochondrial DNA sequence comparisons it was recently argued that chimpanzees from communities to the north and to the south of the Malagarasi are surprisingly distantly related, suggesting that the river prevents gene flow. To investigate this, we conducted a survey along the Malagarasi River. We found a ford comprised of rocks that researchers could cross on foot. On a trail leading to this ford, we collected 13 fresh fecal samples containing chimpanzee DNA, two of which tested positive for SIVcpz. We also found chimpanzee feces within the riverbed. Taken together, this evidence suggests that the Malagarasi River is not an absolute barrier to chimpanzee movements and communities from the areas to the north and south should be considered a single population. These results have important consequences for our understanding of gene flow, disease dynamics and conservation management
Evolutionary Ecology of Prokaryotic Immune Mechanisms.
Published onlineJournal ArticleReviewBacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.S.V.H. received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 660039. We also acknowledge the NERC, the BBSRC, the Royal Society, the Leverhulme Trust, the Wellcome Trust, and the AXA research fund for funding
CHIIMP: An automated high-throughput microsatellite genotyping approach reveals greater allelic diversity in wild chimpanzees
Short tandem repeats (STRs), also known as microsatellites, are commonly used to non invasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping non-habituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts
Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
Design, Construction and Cloning of Truncated ORF2 and tPAsp-PADRE-Truncated ORF2 Gene Cassette From Hepatitis E Virus in the pVAX1 Expression Vector
Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal.
Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus.
Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells.
Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method.
Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations
Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.
INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study
Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms
Copyright: © 2015 Solà et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Recommended from our members
Stops making sense: translational trade-offs and stop codon reassignment
Background
Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature.
Results
In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences.
Conclusions
We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants
- …
