4,405 research outputs found
Anthropology and Moral Philosophy: A Symposium on Michael Banner's The Ethics of Everyday Life
Shear banding in drying films of colloidal nanoparticles
Drying suspensions of colloidal nanoparticles exhibit a variety of interesting strain release mechanisms during film formation. These result in the selection of characteristic length scales during failure processes such as cracking and subsequent delamination. A wide range of materials (e.g., bulk metallic glasses) release strain through plastic deformations which occur in a narrow band of material known as a shear band. Here we show that drying colloidal films also exhibit shear banding. Bands are observed to form a small distance behind the drying front and then to propagate rapidly at ∼45� to the direction of drying. It is shown that the spacing of the bands depends on salt concentration and the evaporation rate of the colloidal suspension. These combined observations suggest that there is a critical shear rate (related to the film yield stress) which controls the ratio of bandwidth to band spacing. Local deformations were measured in the early stages of drying using fluorescent tracer particles. The measurements were used to show that the existence of shear bands is linked to the compaction of particles perpendicular to the drying front. The spacing of shear bands was also found to be strongly correlated with the characteristic length scale of the compaction process. These combined studies elucidate the role of plastic deformation during pattern formation in drying films of colloidal nanoparticles
Incremental Trust in Grid Computing
This paper describes a comparative simulation study of some incremental trust and reputation algorithms for handling behavioural trust in large distributed systems, such as those based on the Grid paradigm. Two types of reputation algorithm (based on discrete and Bayesian evaluation of ratings) and two ways of combining direct trust and reputation (discrete combination and combination based on fuzzy logic) are considered. The various combinations of these methods are evaluated from the point of view of their ability to respond to changes in behaviour and the ease with which suitable parameters for the algorithms can be found in the context of Grid computing systems.
The biomechanical role of the chondrocranium and sutures in a lizard cranium
The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae. We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocraniumare greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocraniumunless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending
IFU observations of luminous type II AGN - I. Evidence for ubiquitous winds
We present observations of 17 luminous (log(L[O III]/L_Sun) > 8.7) local (z <
0.11) type II AGN. Our aim is to investigate the prevalence and nature of AGN
driven outflows in these galaxies by combining kinematic and ionization
diagnostic information. We use non-parametric methods (e.g. W80, the width
containing 80% of the line flux) to assess the line widths in the central
regions of our targets. The maximum values of W80 in each galaxy are in the
range 400 - 1600 km/s, with a mean of 790 +- 90 km/s. Such high velocities are
strongly suggestive that these AGN are driving ionized outflows. Multi-Gaussian
fitting is used to decompose the velocity structure in our galaxies. 14/17 of
our targets require 3 separate kinematic components in the ionized gas in their
central regions. The broadest components of these fits have FWHM = 530 - 2520
km/s, with a mean value of 920 +- 50 km/s. By simultaneously fitting both the
H{\beta}/[O III] and H{\alpha}/[N II] complexes we construct ionization
diagnostic diagrams for each component. 13/17 of our galaxies show a
significant (> 95 %) correlation between the [N II]/H{\alpha} ratio and the
velocity dispersion of the gas. Such a correlation is the natural consequence
of a contribution to the ionization from shock excitation and we argue that
this demonstrates that the outflows from these AGN are directly impacting the
surrounding ISM within the galaxies.Comment: 37 pages, 30 figures. Accepted for publication in MNRA
PyWiFeS: a rapid data reduction pipeline for the Wide Field Spectrograph (WiFeS)
We present PyWiFeS, a new Python-based data reduction pipeline for the Wide Field Spectrograph (WiFeS). PyWiFeS consists of a series of core data processing routines built on standard scientific Python packages commonly used in astronomical applications. Included in PyWiFeS is an implementation of a new global optical model of the spectrograph which provides wavelengths solutions accurate to ?0.05 Å (RMS) across the entire detector. The core PyWiFeS package is designed to be scriptable to enable batch processing of large quantities of data, and we present a default format for handling of observation metadata and scripting of data reduction
Kohn Anomalies in Superconductors
I present the detailed behavior of phonon dispersion curves near momenta
which span the electronic Fermi sea in a superconductor. I demonstrate that an
anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's
dispersion curves when the frequency of the phonon spanning the Fermi sea
exceeds twice the superconducting energy gap. This anomaly occurs at
approximately the same momentum but is {\it stronger} than the normal-state
Kohn anomaly. It also survives at finite temperature, unlike the metallic
anomaly. Determination of Fermi surface diameters from the location of these
anomalies, therefore, may be more successful in the superconducting phase than
in the normal state. However, the superconductor's anomaly fades rapidly with
increased phonon frequency and becomes unobservable when the phonon frequency
greatly exceeds the gap. This constraint makes these anomalies useful only in
high-temperature superconductors such as .Comment: 18 pages (revtex) + 11 figures (upon request), NSF-ITP-93-7
Recommended from our members
Electronic Health Record-Based Surveillance for Community Transmitted COVID-19 in the Emergency Department
Introduction: SARS-CoV-2, a novel coronavirus, manifests as a respiratory syndrome (COVID-19) and is the cause of an ongoing pandemic. The response to COVID-19 in the United States has been hampered by an overall lack of diagnostic testing capacity. To address uncertainty about ongoing levels of SARS-CoV-2 community transmission early in the pandemic, we aimed to develop a surveillance tool using readily available emergency department (ED) operations data extracted from the electronic health record (EHR). This involved optimizing the identification of acute respiratory infection (ARI)-related encounters and then comparing metrics for these encounters before and after the confirmation of SARS-CoV-2 community transmission.Methods: We performed an observational study using operational EHR data from two Midwest EDs with a combined annual census of over 80,000. Data were collected three weeks before and after the first confirmed case of local SARS-CoV-2 community transmission. To optimize capture of ARI cases, we compared various metrics including chief complaint, discharge diagnoses, and ARI-related orders. Operational metrics for ARI cases, including volume, pathogen identification, and illness severity, were compared between the pre- and post-community transmission timeframes using chi-square tests of independence.Results: Compared to our combined definition of ARI, chief complaint, discharge diagnoses, and isolation orders individually identified less than half of the cases. Respiratory pathogen testing was the top performing individual ARI definition but still only identified 72.2% of cases. From the pre to post periods, we observed significant increases in ED volumes due to ARI and ARI cases without identified pathogen.Conclusion: Certain methods for identifying ARI cases in the ED may be inadequate and multiple criteria should be used to optimize capture. In the absence of widely available SARS-CoV-2 testing, operational metrics for ARI-related encounters, especially the proportion of cases involving negative pathogen testing, are useful indicators for active surveillance of potential COVID-19 related ED visits
A comparison of postrelease survival parameters between single and mass stranded delphinids from Cape Cod, Massachusetts, U.S.A.
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 32 (2016): 161–180, doi:10.1111/mms.12255.The viability of healthy single stranded dolphins as immediate release candidates has received little attention. Responders have been reluctant to release lone delphinids due to their social needs, even when they pass the same health evaluations as mass stranded animals. This study tracked postrelease success of 34 relocated and released satellite tagged delphinids from single and mass strandings. Three postrelease survival parameters (transmission duration, swim speed, and daily distance) were examined to evaluate whether they differed among single stranded/single released (SS/SR), mass stranded/single released (MS/SR), or mass stranded/mass released (MS/MR) dolphin groups. Comparisons were also made between healthy and borderline release candidates. Satellite tags transmitted for a mean of 21.2 d (SD = 19.2, range = 1–79), daily distance traveled was 42.0 km/d (11.25, 20.96–70.72), and swim speed was 4.3 km/h (1.1, 2.15–8.54). Postrelease parameters did not differ between health status groups, however, SS/SR dolphins transmitted for a shorter mean duration than MS/MR and MS/SR groups. Postrelease vessel-based surveys confirmed conspecific group location for two healthy, MS/SR dolphins. Overall, these results support the potential to release healthy stranded single delphinids; however, further refinement of health assessment protocols for these challenging cases is needed.National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA NMFS); John H. Prescott Marine Mammal Rescue Assistance Program Grant Numbers: NA11NMF4390078, NA11NMF4390079, NA11NMF439009
- …
