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Abstract

This paper describes a comparative simulation study of
some incremental trust and reputation algorithms for
handling behavioural trust in large distributed systems.
Two types of reputation algorithm (based on discrete and
Bayesian evaluation of ratings) and two ways of combin-
ing direct trust and reputation (discrete combination and
combination based on fuzzy logic) are considered. The
various combinations of these methods are evaluated from
the point of view of their ability to respond to changes in
behaviour and the ease with which suitable parameters for
the algorithms can be found in the context of Grid systems.

1 Introduction

In distributed computer systems, authorising a user to use
a resource involves two vital issues of trust: the user and
resource must be able to identify themselves to one an-
other in a trustworthy manner, and they must trust one an-
other not to misuse the system (by accident or design). We
denote the two types of trust involved identity trust and
behavioural trust respectively. Some classifications [7, 9]
introduce further subdivisions of behavioural trust, but we
shall not need these here.

In many Grid systems today, the mechanisms of identifi-
cation and behavioural trust are combined. Typically, an
identity is proved by presentation of a certificate, and used
to classify its owner as belonging to a particular Virtual
Organisation (VO), whose members are authorised to per-
form certain operations. This is satisfactory in systems
which are static, in the sense that the set of entities is rela-
tively constant over time, and the entities generally behave
well (within limits set by the system). This is a common
situation in Grid computing today, where typically a re-
search community is given access to run similar applica-

tions on a given set of machines, and the members of the
community all know and want to help one another.

In the future, the situation is likely to change, as more
open Grid environments appear, where there may be thou-
sands of users and computers, who dynamically come and
go, do not know one another, and maybe do not have a
friendly relationship. It will then no longer be realistic for
an administrator to set up pre-defined, static behavioural
trust relationships, and new computer-based mechanisms
for determining the degree of trust are needed. These
mechanisms should as far as possible emulate the activ-
ity of human administrators in deciding whether to adjust
the rights given to the individual entities. Trust systems
based on human notions of trust have in recent years been
investigated by a number of groups, and the general prin-
ciples involved elucidated (see for example [5]).

In this paper we consider some mechanisms for handling
behavioural trust dynamically, so that the degree to which,
say, A trusts B is determined by what information A has
accumulated about B’s behaviour. We assume anonymous
malware attacks are detected by other means. The trust
mechanisms considered are incremental: Good behaviour
is rewarded by a higher degree of trust (leading, say, to
authorisation to do more things), and bad behaviour by a
lower degree. Although the mechanisms considered have
all been presented in the literature, we are not aware of
any systematic attempt to analyse them within comparable
scenarios of use. The contribution of this paper is there-
fore to give a comparison of these mechanisms, based on
a series of simulations.

The structure of the paper is as follows: In Section 2 we
give a review of the trust mechanisms considered. In Sec-
tion 3 we present and discuss the simulation experiments
(which included both small and large distributed systems)
and their results. In Section 4 we consider how such trust
mechanisms can be efficiently introduced in a practical
Grid environment, where issues of scalability become im-
portant, and finally in Section 5 we evaluate the various
mechanisms.
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2 The Models Considered

In this study we assume that the identities of entities are
undisputed and that accountability is perfect. We there-
fore use the unqualified term “trust” in the sense of “be-
havioural trust”. We consider the trust which A has in B
to be made up of two components:

Direct trust: based on A’s experience of B’s behaviour.
Reputation: evaluated from ratings communicated by

third parties, based on their experiences of B’s be-
haviour.

Different models differ in the ways in which direct trust
and reputation are combined, how ratings are combined to
give the reputation, the extent to which old information is
discarded as time passes, etc. A large number of models
of trust have been described in the literature, and this is
not the place for a complete review. Instead we focus on
some central issues which differentiate the models.

2.1 Combining Direct Trust and Repu-
tation

There are two predominant ways of combining direct
trust and reputation: so-called discrete models and models
based on fuzzy logic. Discrete models have in particular
been promoted by Azzedin and Maheswaran [2, 1], who
used a linear combination of a direct trust function and a
reputation function to evaluate the trust Γ(x, y, t) of x in
y at time t:

Γ(x, y, t) = wd ∗ Θ(x, y, t) + wr ∗ Ω(x, y, t)

where wd and wr (= 1 − wd) are constant weights, Θ is
the direct trust function:

Θ(x, y, t) = DTT (x, y) ∗ Υ(t − txy)

and Ω is the reputation function:

Ω(x, y, t) =
∑

z∈D−x RTT (z, y) ∗ R(z, y) ∗ Υ(t − tzy)
|D − x|

where D is the domain of entities. Υ is a decay function,
expressing the rate at which trust depreciates, where tzy is
the time at which z most recently interacted with y. DTT
and RTT are tables of the current direct trust and reputa-
tion values respectively, and R(z, y) ∈ [0, 1] is a recom-
mender trust factor, expressing our confidence that there
is no collusion between z and y. Azzedin and Maheswaran
have presented several variations on this basic model, in-
cluding variable contexts and the use of brokers [3], and
have evaluated their performance in a Grid context.

µMembership, 

x1

0.40.0

0.5

0.8

1.0 S1 S2 S3

Figure 1. Fuzzy sets and membership func-
tions

The main alternative to discrete models is to use fuzzy
logic. The rationale for this is that trust is a linguistic con-
cept, which is poorly described by simple numerical val-
ues, say between -1 (total distrust) to +1 (absolute trust).
Fuzzy inference should be a useful theoretical apparatus
for dealing with the lack of precision inherent in describ-
ing trust and reputation, e.g. that a given behaviour will
lead to a “moderately high” degree of trust. For each be-
havioural parameter, a set of (possibly overlapping) fuzzy
sets is defined in terms of membership functions, which
specify the degree of membership of each fuzzy set for
the possible values of the parameter [12, 15]. For exam-
ple, in Figure 1, if parameter x1 has value 0.4, then it has
degree of membership 0.5 in set S1, 0.8 in set S2 and 0.0
in set S3. When the result of using several parameters
(x1, x2, . . . , xn) has to be combined to a result y, a set of
rules is used of the form:

if (x1∈̃Si ∧ x2∈̃Tj ∧ . . .) then y∈̃Ok

where Si, Tj , . . . Ok are fuzzy sets and ∈̃ indicates (a non-
zero degree of) fuzzy membership. The membership func-
tions µk for the output fuzzy sets Ok, k = 1, . . . , r are
commonly given by the so-called min-max formula:

µOk(y) = max[min[µSk(x1), µTk(x2), . . .]]

as shown in Figure 2. For a given set of input parameter
values, this gives a fuzzy output set. The actual output
value, y∗, is found from the membership function of this
set (shaded) by defuzzification. A variety of methods are
available for this. Two of the most widely used are:

Center of Gravity (CoG): The weighted average of the
output membership function.

Mean of Maximum (MoM): The mean of the highest
points of the output membership function.

The use of fuzzy logic to evaluate trust in Grid systems
has been proposed by Hwang and Song [13, 14], although
their approach had a different focus from ours, as they
aimed at combining evaluations of job success rate and
self-defence capability to find an overall trust value.
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2.2 Evaluating Reputation

Methods for evaluating reputation from ratings provided
by third parties also fall largely into two classes: discrete
methods and methods based on Bayesian statistics. The
TRUMMAR system introduced by Derbas et al. [6] is a
typical example of a discrete method, based on the simple
idea that x’s trust in z influences x’s opinion on z’s rating
of y. Then y’s reputation as seen by x at time t is:

Ω(x, y, t) = wo ∗ Ω(x, y, txy) ∗ Υ(t − txy) +

wn ∗
∑

z Ω(x, z, txz) ∗ Ω(z, y, tzy)
∑

z Ω(x, z, txz)
+ . . .

wo and wn are constant weights, and the summation in-
cludes all “neighbours”, z, of x who contribute informa-
tion. A similar approach is taken in Eigentrust [10] and
other systems.

Bayesian methods evaluate a post-observation reputation
value from the pre-observation value and the result of an
observation. Such methods have achieved prominence as
a result of the work of Jøsang and his co-workers in devel-
oping the Beta reputation system [8]. This was originally
targeted at e-commerce, but can be applied in many other
areas [9]. A similar general approach, also focussed on e-
commerce, was used by Mui et al. [11]. The calculation of
reputation makes use of the beta probability density func-
tion, defined as the function f of parameters α and β:

f(p | α, β) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1

where 0 ≤ p ≤ 1 and α, β > 0. Here Γ(x) is the usual
gamma function, and we apply the constraints that p �= 0
if α < 1 and p �= 1 if β < 1. With the beta function, the
expectation value for the probability is E(p) = α/(α+β).

If we have observed a process with two outcomes, say
{x, x̄}, and have seen r outcomes x and s outcomes x̄,

then the probability density function for seeing outcome x
in the future is expressed by f with α = r + 1 and β =
s+1. This has a maximum at E(p) = (r+1)/(r+s+2).
Then y’s reputation as seen by x is Ω(x, y) = f(p |
r(x, y), s(x, y)), where r(x, y) and s(x, y) are respec-
tively the total amount of positive and negative feedback
about y provided by x (all at time t).

As in most statistical approaches, the calculation assumes
that the behaviour of the systems is stationary, so the rat-
ings can be based on all observations back to “the begin-
ning of time”. But often the systems’ behaviour changes
with time, and our main interest is to discover when such
changes take place. In the Beta system, this issue is dealt
with by introducing a forgetting factor, λ ∈ [0, 1], such
that r(x, y) =

∑n
i=1 r(x, y, i) · λn−i. Here r(x, y, i)

is the i’th value of the sequence of n positive feedback
values about y provided by x. A similar formula holds
for s. If λ = 0, only the most recent value is used in
the calculation, while if λ = 1 all previous values are
used. It is not necessary to store all the old feedback
values, as r(x, y) can be found from a recursion formula:
r(x, y) = rold(x, y)·λ+robs, where robs is the latest posi-
tive feedback received, and likewise for s. Effectively this
restricts the reputation calculation to a window of width
∼ 1/(1 − λ) observations up to the current instant.

3 Simulation Experiments

To experiment with the various models, we created a dis-
crete event-driven simulator [4] in C++ using the Free
Fuzzy Logic Library [16] and the GNU scientific library.
The simulations model a number of users and resources
that interact by sending and receiving jobs. Job submis-
sion times are determined from a Poisson distribution with
mean ν. For each job, a user, i, and a resource, j, are se-
lected at random. If the user’s trust in the resource exceeds
the user’s trust threshold, τi, the user submits the job to the
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Figure 3. Determining direct trust

resource, which accepts it if its trust in the user exceeds its
own threshold, τj .

When the job finishes, the user and resource each calcu-
late a degree of satisfaction (the experience, ξ) for the in-
teraction, based on the difference between the job param-
eters and what actually happened. We assume here that
the resource can determine if the user specified the true
requirements for the job, and the user can check whether
the resource provided what was asked for. The value of
ξ is then used to calculate a new direct trust value. Af-
terwards a number of entities in the system are asked to
give a rating for use in calculating a new reputation value.
A rating should express the entity’s trust in the particular
user (or resource). However, badly behaving entities may
lie by submitting inaccurate ratings.

The reputation can be calculated using either of the rep-
utation models, and the direct trust and reputation values
are combined to a final trust value using the discrete or
the fuzzy logic approach. We use the notation Discrete-
Beta for discrete combination of trust where the reputa-
tion is calculated using the Beta reputation system, Fuzzy-
Discrete for fuzzy logic combination of trust where the
reputation is calculated using the discrete reputation sys-
tem, and similarly for Discrete-Discrete and Fuzzy-Beta.

In the experiments, ξ was for simplicity evaluated just
from differences in CPU time, using the heuristic shown

µMembership, 
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Figure 4. Fuzzy membership functions

in Figure 3(a). When ∆ CPU time is small, both user and
resource had an experience matching what was promised,
so ξ is large. As ∆ increases, ξ falls: the user experienced
that the resource did not complete the job or overcharged
for it, or the resource experienced that the user under- or
overstated the job’s CPU time. The calculation of the di-
rect trust value, Θ, is illustrated in Figure 3(b). The previ-
ous combined trust value, Γ, is used in calculating the new
value of Θ, since until new evidence is uncovered the old
value of Γ should give the best indication of the current
level of trust. These rules give a high trust value quickly if
the user or resource behaves well, while many good expe-
riences are needed for a very high trust value. Likewise,
bad behaviour quickly leads to a low trust value, but many
bad experiences are needed for a very low trust value.

The behaviour of an entity (user or resource) in the simula-
tion is described by two separate activities: the request (or
allocation) of CPU time and the return of a rating. When a
simulated user has a job that requires CPU time t0, he will
request tr = t0+δu, where δu is a randomly chosen devia-
tion. When δu is small, the resource has a good experience
ξ (cf. Figure 3(a)), while large δu gives a bad experience.
Similarly, when a resource allocates CPU time to the job,
it will in fact allocate ta = tr + δs. For entity i, values
of δu and δs are drawn from a Laplace distribution with
width ai. If ai is small, there is a higher probability of a
deviation close to zero, corresponding to good behaviour,
while large ai gives bad behaviour. Similarly, when i re-
turns a rating for j, a deviation δr is added to the true
reputation value to emulate the effect of i lying. δr is also
drawn from a Laplace distribution with width ai, but is
divided by 100 to ensure that the rating seems credible.

We used the fuzzy logic membership functions shown in
Figure 4. These are based on Song and Hwang’s func-
tions from [13, 14], but use trapezoidal instead of sigmoid
curves. Each of our fuzzy sets has the same area, and
the same membership functions are used for input (direct
trust, Θ, and reputation, Ω) and output (trust, Γ). The de-
fault fuzzy rule base will enforce a trust policy where di-
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rect trust and reputation are as far as possible considered
to be equally significant, as in the rules:

(Θ∈̃Medium ∧ Ω∈̃V High) ⇒ Γ∈̃High (1)
(Θ∈̃Low ∧ Ω∈̃High) ⇒ Γ∈̃Medium (2)

When there is no output class midway between the two,
however, the fuzzy rule base will enforce a policy where
the most extreme class is chosen, as in rules like:

(Θ∈̃High ∧ Ω∈̃V High) ⇒ Γ∈̃V High (3)
(Θ∈̃V High ∧ Ω∈̃High) ⇒ Γ∈̃V High (4)

(Θ∈̃Low ∧ Ω∈̃V Low) ⇒ Γ∈̃V Low (5)

Figure 5, showing the control surface for the fuzzy mem-
bership functions and rule base, gives an overview of the
security policy. It should be noted that when Γ∈̃V High,
the maximum defuzzified value is 0.8, as this is the cen-
ter of gravity of the VHigh set. Likewise when Γ∈̃V Low,
the minimum defuzzified value is −0.8, the CoG of the
VLow set. This limits the output Γ’s range to [−0.8 : 0.8].
Since the trust scale is arbitrary, the Discrete combination
method was for ease of comparison also limited to this in-
terval. As the policy of the fuzzy rule base predominantly
weights direct trust and reputation equally, they are also
weighted equally (wr = wd) in the Discrete combination
method. The most important simulation parameters are
summarised in Table 1.

The experiments were performed for systems with a wide
range of sizes, from small clusters with 4 users and 4 re-
sources, to large systems with 1000 users and resources.
Each experiment was repeated 20 times using different
random number seeds, for each of the combination meth-
ods, each using the Discrete or the Beta reputation system.
Ratings were in all cases collected from 3 other entities.

Parameter
Mean job submission
time, ν

25.0

wd, wr 0.5
wo 0.0
wn 1.0

Parameter
Initial trust value 0.0
Forgetting factor, λ 0.4
ai, “good” behaviour 2.0
ai, “bad” behaviour 20.0
Trust threshold, τi -1.0

Table 1. Simulation parameters

Combinaton method Trust, Direct Reputa-
– Reputation system Γ trust, Θ tion, Ω

Discrete-Discrete 8.4 4.6 8.55
Discrete-Beta 9.9 4.2 21.75

Table 2. Average no. of events before a
user’s trust in a resource falls below -0.5

3.1 Detecting bad behaviour

In the first simulation scenarios, we investigated how
rapidly trust in a single resource will depreciate when this
resource exhibits bad behaviour, while the remaining en-
tities all behave well. The experiment could of course
equally well have been done with a user exhibiting bad
behaviour. Note that a “bad” resource does not misbehave
continuously – but there is a non-zero probability of it al-
locating too much or too little CPU time for any job.

Each of the two reputation systems was used, and di-
rect trust and reputation were combined using the Dis-
crete method with the weights wd = wr = 0.5. The
rate at which trust evolves is indicated in Table 2, which
lists the number of interactions (“jobs”) needed to reach a
trust value below -0.5. One noticeable feature is the much
slower change in the reputation when using the Beta repu-
tation system. We shall look more closely into this below.

As it cannot be expected that an entity behaves either well
or badly all the time, we next investigated what happens
when a resource changes from good to bad behaviour at
time T1. Figure 6(a) contains the data points and the cor-
responding Bezier approximation for the combined trust
for the Fuzzy-Beta method with T1 = 15 000. Figure 6(b)
contains Bezier approximation curves for the two combi-
nation methods and the two reputation systems. Only the
combined trust is plotted, since in the real world only the
combined trust would be used to make a decision.

In Figure 6(b) we see that the Fuzzy logic method using
the Discrete reputation system does not detect the change
in behaviour. The reason for this lies in the fact that when
T1 = 15 000, the reputation Ω > 0.7. From Figure 4
we see that Ω will then only have non-zero membership
of the VHigh set. Now there are three fuzzy rules where
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Figure 6. Change from good to bad be-
haviour at time T1 = 15 000

Ω∈̃V High:

(Θ∈̃V High ∧ Ω∈̃V High) ⇒ Γ∈̃V High (6)
(Θ∈̃High ∧ Ω∈̃V High) ⇒ Γ∈̃V High (3)

(Θ∈̃Medium ∧ Ω∈̃V High) ⇒ Γ∈̃High (7)

In order for the trust value, Γ, to have a non-zero member-
ship of the set High, the direct trust, Θ, must have some
degree of membership of the set Medium. If not, the result
will be Γ∈̃V High. Since ratings are based on Γ, this will
in turn lead to high ratings and consequently a reputation
value in the set VHigh.

This odd behaviour can be avoided by putting more em-
phasis on the direct trust value. Similar consisderations
apply to rules where Ω∈̃V Low. Specifically, rules (3) and
(5) should be changed to:

(Θ∈̃High ∧ Ω∈̃V High) ⇒ Γ∈̃High (3’)
(Θ∈̃Low ∧ Ω∈̃V Low) ⇒ Γ∈̃Low (5’)

This can be understood as a change in security policy,
whose effect becomes apparent when a user or a resource
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Figure 7. Fuzzy-Discrete

Combination method Trust, Direct Reputa-
– Reputation system Γ trust, Θ tion, Ω

Discrete-Discrete 19.5 17.3 22.05
Fuzzy-Discrete* 12.6 11.35 13.95
Discrete-Beta 26.35 15.15 73.8
Fuzzy-Beta 14.3 12.55 18.75

Table 3. Average no. of events after T1 be-
fore a user’s trust in a resource falls below
-0.5

has calculated a VHigh (/ VLow) reputation value but has
only experienced High (/ Low) direct trust. Figure 7 shows
that with this new policy the change in behaviour is cor-
rectly detected.

Evidently, if we use a fast reputation system, such as
the Discrete system, extra consideration must go into the
fuzzy rule base design. Otherwise we may get excessive
ratings when the behaviour changes, and effectively an un-
desired security policy. The experiment in Section 3.2 will
further illustrate this. Each of the three remaining models
arrives at the correct conclusion: that the behaviour of the
resource changes from good to bad. With the Discrete
method and the Discrete reputation system, the trust val-
ues initially increase rapidly to the maximum, and after
time T1 they quickly decrease to the minimum values.

Table 3 shows the number of events needed for the trust
values to decrease below -0.5. The Fuzzy-Discrete com-
bination uses the alternative security policy (rules (3′)
and (5′)). With the Discrete-Beta system, the reputation
changes very slowly, whereas the Fuzzy-Beta system is
comparable with Fuzzy-Discrete. Interestingly, both of
these are slightly faster than the Discrete-Discrete system,
the reason for this being that the number of observations
before T1 is rather small, so only limited history is incor-
porated into the Beta reputation.
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Figure 8. Oscillating behaviour

3.2 Oscillating behaviour

The next experiment used a more extreme setup, where
the behaviour of a resource oscillates, starting with bad
behaviour. At time T1 (here 15 000) it starts to behave
correctly, at T2 (30 000) it begins to misbehave again, and
finally from T3 (45 000) it behaves correctly. The Bezier
approximation curves for the two combination methods
using the two reputation systems are shown in Figure 8(a).
As in the previous experiments, only a single user’s view
of the combined trust values for the resource is shown.

Once again, the Fuzzy logic method using the Discrete
reputation system does not pick up the change in be-
haviour, and to avoid this, the security policy expressed by
rules (3′) and (5′) needs to be used. Figure 8(b) demon-
strates the Fuzzy-Discrete approach using this alternative
rule base. This experiment again illustrates that, when a
fast reputation system is used together with fuzzy logic,
care needs to be put into the design of the rule base. Oth-
erwise it may enforce an undesired security policy.

The remaining methods and reputation system in Fig-
ure 8(a) show the expected progression of trust. Table 4

Combination method Trust, Direct Reputa-
– Reputation system Γ trust, Θ tion, Ω

Discrete-Discrete 9.15 6.35 10.3
Fuzzy-Discrete* 7.15 4.5 7.65
Discrete-Beta 9.1 4.25 15.15
Fuzzy-Beta 8.85 5.0 11.05

Table 4. Average number of events after
T3 before a user’s trust in the resource is
above +0.5

Combi. method Forgetting factor, λ
– reput. system 0.0 0.4 0.9 0.99 1.00
Discrete-Beta 7.15 9.10 17.15 105 ∞
Fuzzy-Beta* 6.75 8.25 14.85 118 ∞

Table 5. Average no. of events after T3 be-
fore a user’s trust in a resource exceeds
+0.5. Fuzzy-Beta uses rules (3′) and (5′).

shows the number of events needed for the trust to in-
crease above +0.5 after time T3. Note that Fuzzy-Discrete
uses the alternative rule base. As expected, the Beta rep-
utation system required significantly more events before
reaching the +0.5 level, because it includes historical data
in the trust calculation, and is therefore slower to react to
changes in behaviour. The rate of reaction should be deter-
mined by the value of the forgetting factor (here, λ = 0.4);
this was investigated in the next experiment.

3.3 Influence of the forgetting factor

This experiment was based on the same scenario, but the
forgetting factor λ in the Beta reputation system was var-
ied, so that reputation values from various periods of time
would be included in the calculation. The random seeds
were the same as in the previous experiment. Results for
five values of λ are shown in Figure 9.

As λ increases, we observe two effects. As long as λ is
still relatively small (� 0.6), the combined trust values,
as expected, react more slowly to changes in behaviour.
When λ approaches 1, on the other hand, so much histor-
ical information is used that the calculation does not cor-
rectly follow the changes in behaviour at all – there is sim-
ply too much “historical baggage” from epochs with sig-
nificantly different behaviour. Table 5, showing the num-
ber of events needed after time T3 for Γ to exceed +0.5 for
different forgetting factors, confirms these observations.

It is plainly important to choose a suitable value for λ
when using the Beta reputation system. With λ near 0, his-
torical knowledge is forgotten immediately, giving a fast
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Figure 9. Different forgetting factors

reaction to changes in behaviour, so the Beta method is
more or less equivalent to the Discrete method. Moderate
values of λ include a certain amount of historical knowl-
edge, ensuring that the trust rating will only change no-
ticeably after a certain number of observations of “new”
behaviour have been made, but still giving a fairly rapid
response. Values of λ close to 1 require a large number
of observations of “new” behaviour before the trust rat-
ing changes significantly, and there is a serious risk of in-
cluding observations from different epochs of behaviour,
rendering the trust evaluation statistically invalid.

3.4 Larger scale experiments

In the previous experiments, only 4 users and 4 resources
were considered. Further experiments were therefore con-
ducted to see whether the conclusions still apply in larger
systems, where the effect of a small amount of misbe-
haviour might get overlooked.

The first experiment resembles that in Section 3.2, but
we now investigate what happens as we change the
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Figure 10. Fuzzy-Beta. Varying numbers of
interactions

number of interactions between entities when there are
100 users and 100 resources. Again, a single resource
varies its behaviour, starting with bad behaviour. At
T1 (here 7 500 000) it will start to behave correctly, at
T2 (15 000 000) it will start to misbehave again, and fi-
nally from T3 (22 500 000) it will behave correctly again.
As before, only three ratings are used to calculate the rep-
utation, as this seems adequate in practice. To achieve
rapid reputation progression, users and resources are able
to provide references to other entities with which they
have recently had contact. This means that the ratings
which an entity receives are reasonably updated. A user’s
perception of the resource is shown in Figure 10.

Only the results for Fuzzy combination using Beta repu-
tation are shown; results for the other methods were simi-
lar. As the number of interactions is reduced, the span of
trust values falls. However, in general terms the user still
sees the resource varying its behaviour before ending with
good behaviour. Most importantly, even with an average
of only 10 interactions the correct general progression of
trust is observed, though it obviously reflects the true sit-
uation more closely after more interactions.

In the second experiment, the number of entities was in-
creased even further. In all cases, 50% of the entities
were users and 50% resources, and a single resource var-
ied its behaviour. Although they are not identical, the trust
progression curves (not shown here) for all four methods
showed strong similarities, regardless of the number of en-
tities present. Most importantly, all cases arrived at the
same conclusion: that the behaviour of the resource varies
before ending with good behaviour. In this experiment,
each user interacted with each resource approx. 20 times.
Thus in the scenario with 8 entities (4 users, 4 resources)
around 4000 jobs were simulated. With 1000 users and
1000 resources, about 20 million jobs were simulated.
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Users Resources Trust, Direct Reputa-
Γ trust, Θ tion, Ω

4 4 3.9 2.55 5.68
25 25 3.3 2.5 4.85
100 100 3.35 2.85 4.75
500 500 4.25 3.4 4.5
1000 1000 3.05 2.1 4.6

Table 6. Average number of events after T3

before a user’s trust in the resource ex-
ceeds +0.5

Table 6 offers further evidence that the progression of trust
is insensitive to the number of entities, even though signif-
icantly more jobs are processed in the larger scale exper-
iments. It should be remembered that the behaviour of
each user and resource is chosen independently in each
experiment. Since both the trust progression plots and the
average numbers of events in Table 6 are very similar, it
seems fair to conclude that the trust models can detect the
correct progression of trust, regardless of system size.

4 Practical deployment considerations

For trust mechanisms to be useful in a real Grid environ-
ment, two important requirements must be met:

1. Evaluation of trust must make economical use of
storage, CPU time and network bandwidth.

2. It must be easily possible to calculate a meaningful
value for the experience, ξ.

Since each user (subject) potentially needs to have access
to information about all resources and vice versa, the to-
tal space requirements for each of the methods considered
here are proportional to the product of the number of sub-
jects and the number of resources in the system. (On a
given node, it is of course only necessary to store the slice
of this information which refers to “the others”.) The fac-
tor of proportionality depends on the reputation system –
for example in the Beta system, two values (r and s) are
stored, whereas the Discrete system only needs one.

With respect to CPU time, Discrete combination of di-
rect trust and reputation only requires a simple arith-
metic calculation, whereas Fuzzy logic requires the much
more demanding fuzzy inference and defuzzification. In
particular, use of Gaussian membership functions com-
bined with CoG defuzzification may lead to poor perfor-
mance if the fuzzy logic implementation is not optimized
for this. Our experiments, using trapezoidal membership
functions, showed no performance issues.

Network usage is mainly affected by the submission and
retrieval of ratings. In our experiments, we calculated rep-
utation from three ratings, regardless of the number of
users and resources. (This gave an accurate picture of rep-
utation when an entity could provide references to other
entities.) Network traffic is proportional to the square of
the number of ratings exchanged, so a compromise be-
tween network performance and reputation accuracy must
be found. Practical monitoring of a real trust-based Grid
environment is needed to investigate this question.

In these experiments, the experience, ξ, was evaluated
from the difference between the specified and actual CPU
times for a job. In a more realistic setting, more param-
eters, such as main storage usage, disc storage usage and
amounts of data transferred via the network would be in-
cluded. This makes no difference in principle to the results
observed here, although the resources needed to store and
calculate this information would obviously be larger.

The significance of a particular experience depends, as we
have seen, on the policy in use, which determines the ap-
propriate reward or punishment. This is a matter for the
community concerned, related to the acceptance of risk
and the extent to which a fast reaction to small changes is
desired. The policy needs to be reflected in such factors as
the form of fuzzy logic membership functions, fuzzy rule
bases, and discrete weighting factors, depending on the
model chosen. In this respect, Grid computing is differ-
ent from e-commerce, the area where most attention has
been paid to trust-based authorisation. In Grid computing,
bad experiences are (at present) more likely to be due to
system failures and user incompetence than to deliberate
attempts to cheat the system for personal gain. The policy
for reacting to them must reflect this.

5 Concluding Remarks

To satisfy most people’s intuition about trust relationships,
we want the evaluated trust to follow the observed be-
haviour closely, but we do not want a single failure to
cause a total breakdown in trust (implying in the present
context a total refusal of authorisation). The type of ag-
gressive malware attack which should cause such a refusal
should be handled by more traditional IDS/IPSs, rather
than the mechanisms described here. We see from the cur-
rent experiments that this can be achieved with any of the
models discussed here, provided that:

1. The parties whose mutual trust is being evaluated in-
teract a sufficient number of times for them to build
up a reasonable picture of one another’s behaviour.
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2. The parameters which describe how combined trust
is evaluated (such as the relative weights of direct
trust and reputation, the forgetting factor, the width
of the experience function, etc.) are chosen suitably.

In general terms, discrete methods seem to offer a more
rapid reaction to improved or degraded behaviour than
methods based on Bayesian techniques or fuzzy logic.
However, it is necessary to find the right parameter val-
ues, such as the weights wr and wd, in order to achieve
trust evaluations which correspond to our intuitive require-
ments. It is not clear how the correct parameters can be
found in a practical situation in a large distributed sys-
tem, except by repeated experiment. The methods based
on Bayesian techniques and fuzzy logic tended to be more
“self-adjusting”. However, they are also more conserva-
tive, in the sense of tending to preserve a previously held
view until considerable evidence had been accumulated
that this view was mistaken. Nevertheless, they demon-
strated intuitively correct behaviour over a large range of
parameter values, and we expect them to be much easier
to apply in practice.

The results presented here are only a small part of an on-
going study, in which the effect of changing other param-
eters of the trust and reputation system, such as the rating
system, have also been studied. We shall continue to ex-
periment with the trust-based methods described here in a
practical setting, to see whether the results obtained here
can be exploited in real-life systems, where there are more
elements of uncertainty than in a simulator. The simulator
created for these experiments [4] is a general and flexible
tool, which has also been used to experiment with other
contexts where trust-based decisions have to be made, in
particular for finding a just price for services in Grid-based
computing systems.
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