2,032 research outputs found
Recommended from our members
Sensor Grid Design For High Resolution 3D Acoustic Measurements Of Musical Instruments.
Much of the research undertaken in the field of musical acoustic analysis involves (electro)mechanical actuation of the instruments under measurement conditions without the musician present. This has the benefit of repeatability, so that apparatus can be designed in order to make asynchronous measurements at different points in 3D space. It also means that the instrument is analysed in its pure form without any acoustic aberrations presented by a human performer. However it has been found that when a musician performs on the instrument, this repeatability is absent (despite the musicianâs self-belief in their own consistency) and an alternative approach must be taken to make 3-dimensional acoustic measurements with the musician present. Musicians could of course be present during actuated musical instrument analysis but this is not (yet) a common approach. The research project described in this paper is ongoing and recent developments of sensor grid geometry are presented here along with some promising initial results. The sensor array geometry has been investigated with respect to: optimal spacing, minimising errors in data interpolation at high frequency, and practicality for construction and actual use. Some preliminary data from a section of the array grid has been obtained and is presented here in order to demonstrate the robustness of the data at high frequencies. There is some discussion of the likely errors in interpolation of the data and some further ideas are explored regarding the manipulation of the recorded data
Threading light through dynamic complex media
The scattering of light impacts sensing and communication technologies
throughout the electromagnetic spectrum. Overcoming the effects of time-varying
scattering media is particularly challenging. In this article we introduce a
new way to control the propagation of light through dynamic complex media. Our
strategy is based on the observation that many dynamic scattering systems
exhibit a range of decorrelation times -- meaning that over a given timescale,
some parts of the medium may essentially remain static. We experimentally
demonstrate a suite of new techniques to identify and guide light through these
networks of static channels -- threading optical fields around multiple dynamic
pockets hidden at unknown locations inside opaque media. We first show how a
single stable light field propagating through a partially dynamic medium can be
found by optimising the wavefront of the incident field. Next, we demonstrate
how this procedure can be accelerated by 2 orders of magnitude using a
physically realised form of adjoint gradient descent optimisation. Finally, we
describe how the search for stable light modes can be posed as an eigenvalue
problem: we introduce a new optical matrix operator, the time-averaged
transmission matrix, and show how it reveals a basis of
fluctuation-eigenchannels that can be used for stable beam shaping through
time-varying media. These methods rely only on external camera measurements
recording scattered light, require no prior knowledge about the medium, and are
independent of the rate at which dynamic regions move. Our work has potential
future applications to a wide variety of technologies reliant on general wave
phenomena subject to dynamic conditions, from optics to acoustics.Comment: 16 pages, 6 figures. This updated version includes supplementary
informatio
Kinematics reconstruction in solenoidal spectrometers operated in active target mode
We discuss the reconstruction of low-energy nuclear reaction kinematics from
charged-particle tracks in solenoidal spectrometers working in Active Target
Time Projection Chamber mode. In this operation mode, reaction products are
tracked within the active gas medium of the Active Target with a three
dimensional space point cloud. We have inferred the reaction kinematics from
the point cloud using an algorithm based on a linear quadratic estimator
(Kalman filter). The performance of this algorithm has been evaluated using
experimental data from nuclear reactions measured with the Active Target Time
Projection Chamber (AT-TPC) detector
Genetic variation in male sexual behaviour in a population of white-footed mice in relation to photoperiod
In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved
Acquisition of fast transient signals in ICP-MS with enhanced time resolution
In recent years, the field of ICP-MS has seen an increasing trend towards sampling systems and methods that produce short transient signals, rather than a continuous signal response. Fast data acquisition, readout and storage are crucial to take advantage of the wealth of information available from these approaches. However, many of the current generation mass spectrometers, in particular sector-field instruments, were not designed to cope with such short duration signals. This article reports the use of a commercially available multi-channel scaler board, which facilitates capture of TTL pulses from an ICP-MS detector at a user defined time resolution down to 100 ns. The board was used to profile 400â600 ÎŒs wide signals with 10 ÎŒs resolution, derived from the nebulisation of a 50 nm gold nanoparticle suspension. Furthermore, the benefit of a 100% duty cycle was demonstrated for âŒ10 ms wide signals, following ablation of individual macrophage cells with a fast response LA-ICP-MS interface
Practical genetics: alpha-1-antitrypsin deficiency and the serpinopathies
Alpha-1-antitrypsin (alpha(1)-antitrypsin) is the archetypal member of the serine proteinase inhibitor or serpin superfamily. The most common severe deficiency variant is the Z allele, which results in the accumulation of mutant protein within hepatocytes. This 'protein overload' causes neonatal hepatitis, cirrhosis and hepatocellular carcinoma. The lack of circulating plasma alpha(1)-antitrypsin results in early-onset panlobular emphysema. The mechanism underlying the deficiency of Z alpha(1)-antitrypsin is due to an aberrant conformational transition within the protein and the formation of chains of polymers that tangle within the secretory pathway of hepatocytes. This mechanism also underlies the plasma deficiency of other members of the serpin superfamily to cause a class of diseases called the serpinopathies. Specifically mutant alleles of antithrombin, C1-inhibitor and alpha(1)-antichymotrypsin have been reported that favour the spontaneous formation of polymers and the retention of protein within hepatocytes. The consequent lack of plasma antithrombin, C1-inhibitor and alpha(1)-antichymotrypsin results in thrombosis, angio-oedema and emphysema, respectively. Moreover, the polymerisation of mutants of neuroserpin results in the retention of polymers within neurones to cause the inclusion body dementia, familial encephalopathy with neuroserpin inclusion bodies or FENIB. We review here the genetic and molecular basis and clinical features of alpha(1)-antitrypsin deficiency, and show how this provides a platform to understand the other serpinopathies
The WiggleZ Dark Energy Survey: Star-formation in UV-luminous galaxies from their luminosity functions
We present the ultraviolet (UV) luminosity function of galaxies from the
GALEX Medium Imaging Survey with measured spectroscopic redshifts from the
first data release of the WiggleZ Dark Energy Survey. This sample selects
galaxies with high star formation rates: at 0.6 < z < 0.9 the median star
formation rate is at the upper 95th percentile of optically-selected (r<22.5)
galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z <
0.9 starburst galaxies within the volume sampled.
The most luminous galaxies in our sample (-21.0>M_NUV>-22.5) evolve very
rapidly with a number density declining as (1+z)^{5\pm 1} from redshift z = 0.9
to z = 0.6. These starburst galaxies (M_NUV<-21 is approximately a star
formation rate of 30 \msuny) contribute about 1 per cent of cosmic star
formation over the redshift range z=0.6 to z=0.9. The star formation rate
density of these very luminous galaxies evolves rapidly, as (1+z)^{4\pm 1}.
Such a rapid evolution implies the majority of star formation in these large
galaxies must have occurred before z = 0.9.
We measure the UV luminosity function in 0.05 redshift intervals spanning
0.1<z<0.9, and provide analytic fits to the results. At all redshifts greater
than z=0.55 we find that the bright end of the luminosity function is not well
described by a pure Schechter function due to an excess of very luminous
(M_NUV<-22) galaxies. These luminosity functions can be used to create a radial
selection function for the WiggleZ survey or test models of galaxy formation
and evolution. Here we test the AGN feedback model in Scannapieco et al.
(2005), and find that this AGN feedback model requires AGN feedback efficiency
to vary with one or more of the following: stellar mass, star formation rate
and redshift.Comment: 27 pages; 13 pages without appendices. 22 figures; 11 figures in the
main tex
Ks-band detection of thermal emission and color constraints to CoRoT-1b: A low-albedo planet with inefficient atmospheric energy redistribution and a temperature inversion
We report the detection in Ks-band of the secondary eclipse of the hot
Jupiter CoRoT-1b, from time series photometry with the ARC 3.5-m telescope at
Apache Point Observatory. The eclipse shows a depth of 0.336+/-0.042 percent
and is centered at phase 0.5022 (+0.0023,-0.0027), consistent with a zero
eccentricity orbit ecos{\omega} = 0.0035 (+0.0036,-0.0042). We perform the
first optical to near-infrared multi-band photometric analysis of an
exoplanet's atmosphere and constrain the reflected and thermal emissions by
combining our result with the recent 0.6, 0.71, and 2.09 micron secondary
eclipse detections by Snellen et al. (2009), Gillon et al. (2009), and Alonso
et al. (2009a). Comparing the multi-wavelength detections to state-of-the-art
radiative-convective chemical-equilibrium atmosphere models, we find the
near-infrared fluxes difficult to reproduce. The closest blackbody-based and
physical models provide the following atmosphere parameters: a temperature T =
2454 (+84,-170) K, a very low Bond albedo A_B = 0.000 (+0.087,-0.000), and an
energy redistribution parameter P_n = 0.1, indicating a small but nonzero
amount of heat transfer from the day- to night-side. The best physical model
suggests a thermal inversion layer with an extra optical absorber of opacity
kappa_e =0.05cm^2g^-1, placed near the 0.1-bar atmospheric pressure level. This
inversion layer is located ten times deeper in the atmosphere than the
absorbers used in models to fit mid-infrared Spitzer detections of other
irradiated hot Jupiters.Comment: accepted for publication on Ap
Human Cep192 Is Required for Mitotic Centrosome and Spindle Assembly
SummaryAs cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of γ-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble γ-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of γ-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which γ-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis
The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature
We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 perâcent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Î cold dark matter (ÎCDM) model. Assuming this model, we constrain the current expansion rate to Hâ = 67.15 ± 0.98 km sâ»ÂčMpcâ»Âč. Allowing the equation of state of dark energy to vary, we obtain wDE = â1.080 ± 0.135. When assuming a curved ÎCDM model we obtain a curvature value of ΩK = â0.0043 ± 0.0047
- âŠ