222 research outputs found

    Objective probability and quantum fuzziness

    Full text link
    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the "objective preparations view" or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes...Comment: 21 pages, no graphics, inspired by "Subjective probability and quantum certainty" (quant-ph/0608190 v2

    Autonomic physiological data associated with simulator discomfort

    Get PDF
    The development of a physiological monitoring capability for the Army's advanced helicopter simulator facility is reported. Additionally, preliminary physiological data is presented. Our objective was to demonstrate the sensitivity of physiological measures in this simulator to self-reported simulator sickness. The data suggested that heart period, hypergastria, and skin conductance level were more sensitive to simulator sickness than were vagal tone and normal electrogastric activity

    Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier

    Full text link
    Two important processes which may limit productivity gains in forest ecosystems with rising atmospheric CO 2 are reduction in photosynthetic capacity following prolonged exposure to high CO 2 and diminution of positive growth responses when soil nutrients, particularly N, are limiting. To examine the interacting effects of soil fertility and CO 2 enrichment on photosynthesis and growth in trees we grew hybrid poplar ( Populus × euramericana ) for 158 d in the field at ambient and twice ambient CO 2 and in soil with low or high N availability. We measured the timing and rate of canopy development, the seasonal dynamics of leaf level photosynthetic capacity, respiration, and N and carbohydrate concentration, and final above- and belowground dry weight. Single leaf net CO 2 assimilation (A) increased at elevated CO 2 over the majority of the growing season in both fertility treatments. At high fertility, the maximum size of individual leaves, total leaf number, and seasonal leaf area duration (LAD) also increased at elevated CO 2 , leading to a 49% increase in total dry weight. In contrast, at low fertility leaf area growth was unaffected by CO 2 treatment. Total dry weight nonetheless increased 25% due to CO 2 effects on A. Photosynthetic capacity (A at constant internal p(CO 2 ), (( C 1 )) was reduced in high CO 2 plants after 100 d growth at low fertility and 135 d growth at high fertility. Analysis of A responses to changing C 1 indicated that this negative adjustment of photosynthesis was due to a reduction in the maximum rate of CO 2 fixation by Rubisco. Maximum rate of electron transport and phosphate regeneration capacity were either unaffected or declined at elevated CO 2 . Carbon dioxide effects on leaf respiration were most pronounced at high fertility, with increased respiration mid-season and no change (area basis) or reduced (mass basis) respiration late-season in elevated compared to ambient CO 2 plants. This temporal variation correlated with changes in leaf N concentration and leaf mass per area. Our results demonstrate the importance of considering both structural and physiological pathways of net C gain in predicting tree responses to rising CO 2 under conditions of suboptimal soil fertility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65655/1/j.1469-8137.1995.tb04295.x.pd

    Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2

    Get PDF
    Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (Fq′/Fm′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO2 assimilation rates and higher internal CO2 concentrations. Increasing CO2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all Ci levels. Together, these data suggest that the primary light-induced opening or CO2-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO2. © 2008 The Author(s)

    Reflections on Seminole Rock: The Past, Present, and Future of Deference to Agency Regulatory Interpretations

    Get PDF
    Seminole Rock (or Auer) deference has captured the attention of scholars, policymakers, and the judiciary. That is why Notice & Comment, the blog of the Yale Journal on Regulation and the American Bar Association’s Section of Administrative Law & Regulatory Practice, hosted an online symposium from September 12 to September 23, 2016 on the subject. This symposium contains over 20 contributions addressing different aspects of Seminole Rock deference. Topics include: History of Seminole Rock Empirical Examinations of Seminole Rock Understanding Seminole Rock Within Agencies Understanding Seminole Rock as Applied to Tax, Environmental Law, and Criminal Sentencing Why Seminole Rock Matters Should the Supreme Court Overrule Seminole Rock? Would Overruling Seminole Rock Have Unintended Consequences? What Might the Supreme Court Do? What Might Congress Do? The Future of Seminole Roc

    Recycling manure as cow bedding: potential benefits and risks for UK dairy farms

    Get PDF
    Material obtained from physical separation of slurry (recycled manure solids; RMS) has been used as bedding for dairy cows in dry climates in the US since the 1970s. Relatively recently, the technical ability to produce drier material has led to adoption of the practice in Europe under different climatic conditions. This review collates the evidence available on benefits and risks of using RMS bedding on dairy farms, with a European context in mind. There was less evidence than expected for anecdotal claims of improved cow comfort. Among animal health risks, only udder health has received appreciable attention. There are some circumstantial reports of difficulties of maintaining udder health on RMS, but no large scale or long term studies of effects on clinical and subclinical mastitis have been published. Existing reports do not give consistent evidence of inevitable problems, nor is there any information on clinical implications for other diseases. The scientific basis for guidelines on management of RMS bedding is limited. Decisions on optimum treatment and management may present conflicts between control of different groups of organisms. There is no information on the influence that such 'recycling' of manure may have on pathogen virulence. The possibility of influence on genetic material conveying antimicrobial resistance is a concern, but little understood. Should UK or other non-US farmers adopt RMS, they are advised to do so with caution, apply the required strategies for risk mitigation, maintain strict hygiene of bed management and milking practices and closely monitor the effects on herd health

    Conformational changes in α7 acetylcholine receptors underlying allosteric modulation by divalent cations

    Get PDF
    Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172

    Finding Our Way through Phenotypes

    Get PDF
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility
    corecore