9,689 research outputs found

    HYDROGEN TRAPPING IN NIOBIUM VANADIUM ALLOYS

    Get PDF
    The authors have measured the localised vibrational modes of hydrogen in a Nd0.93V0.07 alloy. As one cools the sample for the first time to 10K one observes that hydrogen is trapped at octahedral sites associated with two substitutional vanadium atoms. The trap energy is small (10-20 meV) and less than the precipitation enthalpy. The phenomenon exhibits an interesting hysteresis. On repeated cooling cycles the hydrogen atoms tend to precipitate rather than stay in the trap sites. This is due to the formation of additional nucleation sites on the first cooling cycle

    Catastrophic photometric redshift errors: weak lensing survey requirements

    Full text link
    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~10^6 we find that using only the photometric redshifts with z<=2.5 leads to a drastic reduction in Nspec to ~30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z_s-z_p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. The cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.Comment: 14 pages, 3 figure

    Five-dimensional PPN formalism and experimental test of Kaluza-Klein theory

    Get PDF
    The parametrized post Newtonian formalism for 5-dimensional metric theories with a compact extra dimension is developed. The relation of the 5-dimensional and 4-dimensional formulations is then analyzed, in order to compare the higher dimensional theories of gravity with experiments. It turns out that the value of post Newtonian parameter ฮณ\gamma in the reduced 5-dimensional Kaluza-Klein theory is two times smaller than that in 4-dimensional general relativity. The departure is due to the existence of an extra dimension in the Kaluza-Klein theory. Thus the confrontation between the reduced 4-dimensional formalism and Solar system experiments raises a severe challenge to the classical Kaluza-Klein theory.Comment: 4 pages, 1 table, accepted for publication in Physics Letters

    Entanglement in holographic dark energy models

    Get PDF
    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoiding it virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.Comment: 10 pages, version to appear in PL

    A high-speed tunable beam splitter for feed-forward photonic quantum information processing

    Full text link
    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons

    On the 0-dimensional cusps of the Kahler moduli of a K3 surface

    Full text link
    Let S be a projective K3 surface. It is proved that the 0-dimensional cusps of the Kahler moduli of S are in one-to-one correspondence with the twisted Fourier-Mukai partners of S. This leads to a counting formula for the 0-dimensional cusps of the Kahler moduli. Applications to rational maps between K3 surfaces with large Picard numbers are given. When the Picard number of S is 1, the bijective correspondence is calculated explicitly.Comment: 24page

    Size of spectroscopic calibration samples for cosmic shear photometric redshifts

    Full text link
    Weak gravitational lensing surveys using photometric redshifts can have their cosmological constraints severely degraded by errors in the photo-z scale. We explore the cosmological degradation vs the size of the spectroscopic survey required to calibrate the photo-z probability distribution. Previous work has assumed a simple Gaussian distribution of photo-z errors; here we describe a method for constraining an arbitrary parametric photo-z error model. As an example we allow the photo-z probability distribution to be the sum of NgN_g Gaussians. To limit cosmological degradation to a fixed level, photo-z models with multiple Gaussians require up to 5 times larger calibration sample than one would estimate from assuming a single-Gaussian model. This degradation saturates at Ngโ‰ˆ4N_g\approx 4. Assuming a single Gaussian when the photo-z distribution has multiple parameters underestimates cosmological parameter uncertainties by up to 35%. The size of required calibration sample also depends upon the shape of the fiducial distribution, even when the RMS photo-z error is held fixed. The required calibration sample size varies up to a factor of 40 among the fiducial models studied, but this is reduced to a factor of a few if the photo-z parameters are forced to be slowly varying with redshift. Finally we show that the size of the required calibration sample can be substantially reduced by optimizing its redshift distribution. We hope this study will help stimulate work on better understanding of photo-z errors.Comment: 9 pages 4 figures, minor changes, match the published versio

    Correlating AFM Probe Morphology to Image Resolution for Single-Wall Carbon Nanotube Tips

    Get PDF
    We report local-field-enhanced light emission from silicon nanocrystals close to a film of nanoporous gold. We resolve photoluminescence as the goldโˆ’Si nanocrystal separation distance is varied between 0 and 20 nm and observe a fourfold luminescence intensity enhancement concomitant with increases in the coupled silicon nanocrystal/nanoporous gold absorbance cross section and radiative decay rate. A detailed analysis of the luminescence data indicated a local-field-enhanced quantum efficiency of 58% for the Si nanocrystals coupled to the nanoporous gold layer

    Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI

    Get PDF
    The production of contrast agents sensitive to neuronal signaling events is a rate-limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High-throughput generation and evaluation of potential probes are possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacterial heme protein that allowed detection of the neurotransmitter dopamine in vitro and in living animals. The directed evolution method involves successive cycles of mutagenesis and screening that could be generalized to produce contrast agents sensitive to a variety of molecular targets in the nervous system
    • โ€ฆ
    corecore