10 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Letter from Edgar F. Shannon, Lexington, Virginia, to Charles Manly, October 9, 1917

    No full text
    This item is from the Manly Family papers. The collection includes the papers of Basil Manly, president of the University of Alabama, 1837-1855, and a founder of Furman University, which reflect the history of the period as well as his life as theologian and educator. It also contains materials created and gathered by other Manly family members, including his sons Basil and Charles, president of Furman University, 1881-1897

    Nolanville Comprehensive Plan 2021-2041

    Get PDF
    Nearly five years after the completion of the 2015 Comprehensive Plan, TxTC partnered with the City of Nolanville again in 2019 with the ENDEAVR project. ENDEAVR (Envisioning the Neo-traditional Development by Embracing the Autonomous Vehicles Realm)— is an ambitious project to re-envision ”smart” city solutions in small towns with students from a wide range of university degree programs in urban planning, landscape architecture, visualization, computer science, and civil, electrical and mechanical engineering. ENDEAVR launched in 2018 with a $300,000 grant from the Keck Foundation, which supports projects that promote inventive educational approaches. The City of Nolanville sought to explore “smart” city solutions to make efficient and prudent improvements to traffic flow, public safety, optimize utility systems, high-bandwidth digital networks, and foster autonomous vehicles. Additionally, TxTC included these “smart” city solutions to update its 2015 comprehensive plan. The new 2020 comprehensive plan embeds “smart” city solutions into its priorities and capital improvement projects to foster diversity and continue to make Nolanville “A Great Place to Live”

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore