6,068 research outputs found

    High-pressure synthesis of rock salt LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions

    Full text link
    Metastable LiMeO2-ZnO (Me = Fe3+, Ti3+) solid solutions with rock salt crystal structure have been synthesized by solid state reaction of ZnO with LiMeO2 complex oxides at 7.7 GPa and 1350-1450 K. Structure, phase composition, thermal stability and thermal expansion of the recovered samples have been studied by X-ray diffraction with synchrotron radiation. At ambient pressure rock salt LiMeO2-ZnO solid solutions are kinetically stable up to 670-800 K depending on the composition.Comment: 11 pages, 3 figures, 1 tabl

    Detecting the harmonics of oscillations with time-variable frequencies

    Get PDF
    A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology

    Group entropies, correlation laws and zeta functions

    Full text link
    The notion of group entropy is proposed. It enables to unify and generalize many different definitions of entropy known in the literature, as those of Boltzmann-Gibbs, Tsallis, Abe and Kaniadakis. Other new entropic functionals are presented, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium, when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.Comment: to appear in Physical Review

    H-theorem for classical matter around a black hole

    Get PDF
    We propose a classical solution for the kinetic description of matter falling into a black hole, which permits to evaluate both the kinetic entropy and the entropy production rate of classical infalling matter at the event horizon. The formulation is based on a relativistic kinetic description for classical particles in the presence of an event horizon. An H-theorem is established which holds for arbitrary models of black holes and is valid also in the presence of contracting event horizons

    Search of low-dimensional magnetics on the basis of structural data: spin-1/2 antiferromagnetic zigzag chain compounds In2VO5, beta-Sr(VOAsO4)2,(NH4,K)2VOF4 and alpha-ZnV3O8

    Full text link
    A new technique for searching low-dimensional compounds on the basis of structural data is presented. The sign and strength of all magnetic couplings at distances up to 12 A in five predicted new antiferromagnetic zigzag spin-1/2 chain compounds In2VO5, beta-Sr(VOAsO4)2, (NH4)2VOF4, K2VOF4 and alpha-ZnV3O8 were calculated. It was stated that in the compound In2VO5 zigzag spin chains are frustrated, since the ratio (J2/J1) of competing antiferromagnetic (AF) nearest- (J1) and AF next-to-nearest-neighbour (J2) couplings is equal to 1.68 that exceeds the Majumdar-Ghosh point by 1/2. In other compounds the zigzag spin chains are AF magnetically ordered single chains as value of ratios J2/J1 is close to zero. The interchain couplings were analyzed in detail.Comment: 14 pages, 6 figure, 1 table, minor change

    Exploring the randomness of Directed Acyclic Networks

    Get PDF
    The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of real systems -such as some food-webs and electronic and neural wiring- can be described in terms of so-called directed acyclic graphs (DAGs). An important ingredient of the analysis of such networks is a proper comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the {\em randomness} of the real systems with respect to suitable null models. This approximation is particularly relevant when the finite size and/or large connectivity of real systems make inadequate a comparison with the predictions obtained from the so-called {\em configuration model}. In this paper we analyze four methods of DAG randomization as defined by the desired combination of topological invariants (directed and undirected degree sequence and component distributions) aimed to be preserved. A highly ordered DAG, called \textit{snake}-graph and a Erd\:os-R\'enyi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely, the \textit{C. elegans} cell lineage network, a PhD student-advisor network and the Milgram's citation network were analyzed using each randomization method. Results show how the interpretation of degree-degree relations in DAGs respect to their randomized ensembles depend on the topological invariants imposed. In general, real DAGs provide disordered values, lower than the expected by chance when the directedness of the links is not preserved in the randomization process. Conversely, if the direction of the links is conserved throughout the randomization process, disorder indicators are close to the obtained from the null-model ensemble, although some deviations are observed.Comment: 13 pages, 5 figures and 5 table

    A synthesis of 8,10-dimethoxyellipticine via a diphenylamine

    Get PDF
    8,10-Dimethoxyellipticine has been synthesised from readily available benzene derivatives via palladium acetate or photochemical cyclisation of intermediate diphenylamine derivatives. The route has advantages over indole based syntheses.We thank the British Council for awards under the Treaty of Windsor Programme and JNICT (IBQF - UM) Portugal for financial support.info:eu-repo/semantics/publishedVersio

    Crystal-field splitting for low symmetry systems in ab initio calculations

    Full text link
    In the framework of the LDA+U approximation we propose the direct way of calculation of crystal-field excitation energy and apply it to La and Y titanates. The method developed can be useful for comparison with the results of spectroscopic measurements because it takes into account fast relaxations of electronic system. For titanates these relaxation processes reduce the value of crystal-field splitting by 30\sim30% as compared with the difference of LDA one electron energies. However, the crystal-field excitation energy in these systems is still large enough to make an orbital liquid formation rather unlikely and experimentally observed isotropic magnetism remains unexplained.Comment: 13 pages, 5 figures, 3 table

    Shannon dimensionality of quantum channels and its application to photon entanglement

    Get PDF
    We introduce the concept of Shannon dimensionality D as a new way to quantify bipartite entanglement as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons, using two state analyzers composed of a rotatable angular-sector phase plate that is lens-coupled to a single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the phase plate is increased and anticipate that D = 50 is experimentally within reach.Comment: 4 pages, 3 figures, accepted for Physical Review Letter
    corecore