8 research outputs found

    Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone

    No full text
    Abstract Background Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. Results Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. Conclusion Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system

    Worksite Chemical Air Emissions and Worker Exposure during Sanitary Sewer and Stormwater Pipe Rehabilitation Using Cured-in-Place-Pipe (CIPP)

    Get PDF
    Chemical emissions were characterized for steam-cured cured-in-place-pipe (CIPP) installations in Indiana (sanitary sewer) and California (stormwater). One pipe in California involved a low-volatile organic compound (VOC) non-styrene resin, while all other CIPP sites used styrene resins. In Indiana, the uncured resin contained styrene, benzaldehyde, butylated hydroxytoluene (BHT), and unidentified compounds. Materials emitted from the CIPP worksites were condensed and characterized. An emitted chemical plume in Indiana was a complex multiphase mixture of organic vapor, water vapor, particulate (condensable vapor and partially cured resin), and liquid droplets (water and organics). The condensed material contained styrene, acetone, and unidentified compounds. In California, both styrene and low-VOC resin condensates contained styrene, benzaldehyde, benzoic acid, BHT, dibutyl phthalate, and 1-tetradecanol. Phenol was detected only in the styrene resin condensate. Acetophenone, 4-<i>tert</i>-butylcyclohexanol, 4-<i>tert</i>-butylcyclohexanone, and tripropylene glycol diacrylate were detected only in the low-VOC condensate. Styrene in the low-VOC condensate was likely due to contamination of contractor equipment. Some, but not all, condensate compounds were detected in uncured resins. Two of four California styrene resin condensates were cytotoxic to mouse alveolar type II epithelial cells and macrophages. Real-time photoionization detector monitoring showed emissions varied significantly and were a function of location, wind direction, and worksite activity

    Worksite Chemical Air Emissions and Worker Exposure during Sanitary Sewer and Stormwater Pipe Rehabilitation Using Cured-in-Place-Pipe (CIPP)

    No full text
    Chemical emissions were characterized for steam-cured cured-in-place-pipe (CIPP) installations in Indiana (sanitary sewer) and California (stormwater). One pipe in California involved a low-volatile organic compound (VOC) non-styrene resin, while all other CIPP sites used styrene resins. In Indiana, the uncured resin contained styrene, benzaldehyde, butylated hydroxytoluene (BHT), and unidentified compounds. Materials emitted from the CIPP worksites were condensed and characterized. An emitted chemical plume in Indiana was a complex multiphase mixture of organic vapor, water vapor, particulate (condensable vapor and partially cured resin), and liquid droplets (water and organics). The condensed material contained styrene, acetone, and unidentified compounds. In California, both styrene and low-VOC resin condensates contained styrene, benzaldehyde, benzoic acid, BHT, dibutyl phthalate, and 1-tetradecanol. Phenol was detected only in the styrene resin condensate. Acetophenone, 4-<i>tert</i>-butylcyclohexanol, 4-<i>tert</i>-butylcyclohexanone, and tripropylene glycol diacrylate were detected only in the low-VOC condensate. Styrene in the low-VOC condensate was likely due to contamination of contractor equipment. Some, but not all, condensate compounds were detected in uncured resins. Two of four California styrene resin condensates were cytotoxic to mouse alveolar type II epithelial cells and macrophages. Real-time photoionization detector monitoring showed emissions varied significantly and were a function of location, wind direction, and worksite activity

    Supine position compared to other positions during the second stage of labor: a meta-analytic review.

    No full text
    Contains fulltext : 59339.pdf (publisher's version ) (Closed access)The routine use of the supine position during the second stage of labor can be considered to be an intervention in the natural course of labor. This study aimed to establish whether the continuation of this intervention is justified. Nine randomized controlled trials and one cohort study were included. A meta-analysis indicated a higher rate of instrumental deliveries and episiotomies in the supine position. A lower estimated blood loss and lower rate of postpartum hemorrhage were found in the supine position, however it is not clear whether this is a real or only an observed difference. Heterogenous, non-pooled data showed that women experienced more severe pain in the supine position and had a preference for other birthing positions. Many methodological problems were identified in the studies and the appropriateness of a randomized controlled trial to study this subject is called into question. A cohort study is recommended as a more appropriate methodology, supplemented by a qualitative method to study women's experiences. Objective laboratory measurements are advised to examine the difference in blood loss. In conclusion, the results do not justify the continuation of the routine use of the supine position during the second stage of labor

    Toxicological and epidemiological studies on effects of airborne fibers: Coherence and public health implications

    No full text
    corecore