30 research outputs found

    Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches

    Get PDF
    We gratefully acknowledge the support of the UK EPSRC (grant no. EP/J018171/1), the EU FP7 programmes: the Extreme Light Infrastructure (ELI) project, the Laserlab-Europe (no. 284464), and the EUCARD-2 project (no. 312453).The laser-plasma wakefield accelerator is a compact source of high brightness, ultra-short duration electron bunches. Self-injection occurs when electrons from the background plasma gain sufficient momentum at the back of the bubble-shaped accelerating structure to experience sustained acceleration. The shortest duration and highest brightness electron bunches result from self-injection close to the threshold for injection. Here we show that in this case injection is due to the localized charge density build-up in the sheath crossing region at the rear of the bubble, which has the effect of increasing the accelerating potential to above a critical value. Bunch duration is determined by the dwell time above this critical value, which explains why single or multiple ultra-short electron bunches with little dark current are formed in the first bubble. We confirm experimentally, using coherent optical transition radiation measurements, that single or multiple bunches with femtosecond duration and peak currents of several kiloAmpere, and femtosecond intervals between bunches, emerge from the accelerator.Publisher PDFPeer reviewe

    Determining Histories of Slip on Normal Faults With Bedrock Scarps Using Cosmogenic Nuclide Exposure Data

    Get PDF
    Cosmogenic exposure data can be used to calculate time-varying fault slip rates on normal faults with exposed bedrock scarps. The method relies on assumptions related to how the scarp is preserved, which should be consistent at multiple locations along the same fault. Previous work commonly relied on cosmogenic data from a single sample locality to determine the slip rate of a fault. Here we show that by applying strict sampling criteria and using geologically informed modeling parameters in a Bayesian-inference Markov chain Monte Carlo method, similar patterns of slip rate changes can be modeled at multiple sites on the same fault. Consequently, cosmogenic data can be used to resolve along-strike fault activity. We present cosmogenic 36Cl concentrations from seven sites on two faults in the Italian Apennines. The average slip rate varies between sites on the Campo Felice Fault (0.84 ± 0.23 to 1.61 ± 0.27 mm yr−1), and all sites experienced a period of higher than average slip rate between 0.5 and 2 ka and a period of lower than average slip rate before 3 ka. On the Roccapreturo fault, slip rate in the center of the fault is 0.55 ± 0.11 and 0.35 ± 0.05 mm yr−1 at the fault tip near a relay zone. The estimated time since the last earthquake is the same at each site along the same fault (631 ± 620 years at Campo Felice and 2,603 ± 1,355 years at Roccapreturo). These results highlight the potential for cosmogenic exposure data to reveal the detailed millennial history of earthquake slip on active normal faults

    The Time Domain Spectroscopic Survey: Variable Selection and Anticipated Results

    Get PDF
    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg2 selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope

    High quality electron beams from a laser wakefield accelerator

    No full text
    Very stable, high quality electron beams (current ∼ 10 kA, energy spread < 1%, emittance ∼ 1π mm mrad) have been generated in a laser-plasma accelerator driven by 25 TW femtosecond laser pulses

    Host plant preference and performance of the vine weevil Otiorhynchus sulcatus

    No full text
    1. The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. 2. Assessment of reproductive performance shows that the host-plant range of the adult vine weevil Otiorhynchus sulcatus in Europe is limited to one gymnosperm genus (Taxus sp.) and a broad range of angiosperm plants in two subclasses of the Dicotyledonae, namely Dilleniidae and Rosidae. The successful reproduction on very distantly related plant taxa suggests that the original weevil- and plant-habitat has mediated the current host-plant range of the vine weevil. 3. Contact-preference tests with equally suitable hosts, such as Aronia, Fragaria, Euonymus and Taxus, and one less suitable host, Humulus, indicate a mismatch between contact preference and performance and, as far as olfactory preferences are known, these match neither the contact preferences nor the performance. This mismatch may arise because (i) host plant species offered do not occur in weevil habitat in Europe (e.g. Aronia and the cultivated Fragaria come from North America) and (ii) predation (or disease) risks differ among host plants, thereby altering effective reproductive performance. 4. With respect to performance on novel hosts (Thuja, Prunus) and bad hosts (Rhododendron), some between-individual variation is found within a single population, suggesting that local populations harbour (possibly genetic) variation for adaptation to new hosts. How this variation is maintained in the face of strong selection pressures on local populations of flightless and thelytokous weevils, is an important question for understanding the broad host plant range in the vine weevi

    Characterisation of electron beams from laser-driven particle accelerators

    No full text
    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators
    corecore