1,688 research outputs found

    Efficient solar cells by space processing

    Get PDF
    Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation

    Principal forms X^2 + nY^2 representing many integers

    Get PDF
    In 1966, Shanks and Schmid investigated the asymptotic behavior of the number of positive integers less than or equal to x which are represented by the quadratic form X^2+nY^2. Based on some numerical computations, they observed that the constant occurring in the main term appears to be the largest for n=2. In this paper, we prove that in fact this constant is unbounded as n runs through positive integers with a fixed number of prime divisors.Comment: 10 pages, title has been changed, Sections 2 and 3 are new, to appear in Abh. Math. Sem. Univ. Hambur

    Accelerated Bayesian Inference for Molecular Simulations using Local Gaussian Process Surrogate Models

    Full text link
    While Bayesian inference is the gold standard for uncertainty quantification and propagation, its use within physical chemistry encounters formidable computational barriers. These bottlenecks are magnified for modeling data with many independent variables, such as X-ray/neutron scattering patterns and electromagnetic spectra. To address this challenge, we apply a Bayesian framework accelerated via local Gaussian process (LGP) surrogate models. We show that the time-complexity of LGPs scales linearly in the number of independent variables, in stark contrast to the computationally expensive cubic scaling of conventional Gaussian processes. To illustrate the method, we trained a LGP surrogate model on the experimental radial distribution function of liquid neon, and observed a remarkable 288,000-fold speed-up compared to molecular dynamics with insignificant loss in predictive accuracy. We conclude that LGPs are robust and efficient surrogate models, poised to expand the application of Bayesian inference in molecular simulations to a broad spectrum of ever-advancing experimental data

    Pepper-pot emittance measurement of laser-plasma wakefield accelerated electrons

    Get PDF
    The transverse emittance is an important parameter governing the brightness of an electron beam. Here we present the first pepper-pot measurement of the transverse emittance for a mono-energetic electron beam from a laser-plasma wakefield accelerator, carried out on the Advanced Laser-Plasma High Energy Accelerators towards X-Rays (ALPHA-X) beam line. Mono-energetic electrons are passed through an array of 52 mu m diameter holes in a tungsten mask. The pepper-pot results set an upper limit for the normalised emittance at 5.5 +/- 1 pi mm mrad for an 82 MeV beam

    Quasar Clustering and the Lifetime of Quasars

    Get PDF
    Although the population of luminous quasars rises and falls over a period of 10^9 years, the typical lifetime of individual quasars is uncertain by several orders of magnitude. We show that quasar clustering measurements can substantially narrow the range of possible lifetimes with the assumption that luminous quasars reside in the most massive host halos. If quasars are long-lived, then they are rare phenomena that are highly biased with respect to the underlying dark matter, while if they are short-lived they reside in more typical halos that are less strongly clustered. For a given quasar lifetime, we calculate the minimum host halo mass by matching the observed space density of quasars, using the Press-Schechter approximation. We use the results of Mo & White to calculate the clustering of these halos, and hence of the quasars they contain, as a function of quasar lifetime. A lifetime of t_Q = 4 x 10^7 years, the e-folding timescale of an Eddington luminosity black hole with accretion efficiency eps=0.1, corresponds to a quasar correlation length r_0 ~ 10 Mpc/h in low-density cosmological models at z=2-3; this value is consistent with current clustering measurements, but these have large uncertainties. High-precision clustering measurements from the 2dF and Sloan quasar surveys will test our key assumption of a tight correlation between quasar luminosity and host halo mass, and if this assumption holds then they should determine t_Q to a factor of three or better. An accurate determination of the quasar lifetime will show whether supermassive black holes acquire most of their mass during high-luminosity accretion, and it will show whether the black holes in the nuclei of typical nearby galaxies were once the central engines of high-luminosity quasars.Comment: ApJ Accepted (Feb 2001). 30 pages, 8 embedded ps figures, AASTEX5. Added discussion of quasar luminosity evolution. Also available at http://www.ociw.edu/~martini/pubs

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap

    Field induced transition of the S=1 antiferromagnetic chain with anisotropy

    Full text link
    The ground state magnetization process of the S=1 antiferromagnetic chain with the easy-axis single-ion anisotropy described by negative DD is investigated. It is numerically found that a phase transition between two different gapless phases occurs at an intermediate magnetic field between the starting and saturation points of the magnetization for 1.49<D<0.35-1.49<D<-0.35. The transition is similar to the spin flopping, but it is second-order and not accompanied with any significant anomalous behaviors in the magnetization curve. We also present the phase diagrams in the m-D and H-D planes which reveal a possible re-entrant transition.Comment: 6 pages, Revtex, with 6 eps figures, to appear in Phys. Rev. B (Sep. 1
    corecore