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ABSTRACT
Although the population of luminous quasars rises and falls over a period of D109 yr, the typical

lifetime of individual quasars is uncertain by several orders of magnitude. We show that quasar clus-
tering measurements can substantially narrow the range of possible lifetimes, with the assumption that
luminous quasars reside in the most massive host halos. If quasars are long-lived, then they are rare
phenomena that are highly biased with respect to the underlying dark matter, while if they are short-
lived they reside in more typical halos that are less strongly clustered. For a given quasar lifetime, we
calculate the minimum host halo mass by matching the observed space density of quasars, using the
Press-Schechter approximation. We use the results of Mo & White to calculate the clustering of these
halos, and hence of the quasars they contain, as a function of quasar lifetime. A lifetime of t

Q
\ 4 ] 107

yr, the e-folding timescale of an Eddington luminosity black hole with accretion efficiency v\ 0.1, corre-
sponds to a quasar correlation length of h~1 Mpc in low-density cosmological models atr0B 10
z\ 2È3 ; this value is consistent with current clustering measurements, but these have large uncertainties.
High-precision clustering measurements from the Two-Degree Field (2dF) and Sloan quasar surveys will
test our key assumption of a tight correlation between quasar luminosity and host halo mass, and if this
assumption holds, then they should determine to a factor of 3 or better. An accurate determination oft

Qthe quasar lifetime will show whether supermassive black holes acquire most of their mass during high-
luminosity accretion, and it will show whether the black holes in the nuclei of typical nearby galaxies
were once the central engines of high-luminosity quasars.
Subject headings : dark matter È large-scale structure of universe È quasars : general

1. INTRODUCTION

Mounting evidence for the existence of supermassive
black holes in the centers of nearby galaxies (recently
reviewed by, e.g., Richstone et al. 1998) supports the long-
standing hypothesis that quasars are powered by black hole
accretion (e.g., Salpeter 1964 ; Zeldovich & Novikov 1964 ;
Lynden-Bell 1969). However, one of the most basic proper-
ties of quasars, the typical quasar lifetime, remainst

Q
,

uncertain by orders of magnitude. The physics of gravita-
tional accretion and radiation pressure provides one
natural timescale, the e-folding time t

e
\ MBH/M0 \ 4

] 108 vl yr of a black hole accreting mass with a radiative
efficiency and shining at a fraction ofv\ L /M0 c2 l\ L /L Eits Eddington luminosity (Salpeter 1964). However, while
vD 0.1 and lD 1 are plausible values for a quasar, it is
possible that black holes accrete much of their mass while
radiating at much lower efficiency, or at a small fraction
of The task of determining must therefore beL E. t

Qapproached empirically.
The observed evolution of the quasar luminosity function

imposes a strong upper limit on of about 109 yr, since thet
Qwhole quasar population rises and falls over roughly this

interval (see, e.g., Osmer 1998). The lifetime of individual
quasars could be much shorter than the lifetime of the
quasar population, however, and lower limits of yrt

Q
D 105

rest on indirect arguments, such as the requirement that
quasars maintain their ionizing luminosity long enough to
explain the proximity e†ect in the Lya forest (e.g., Bajtlik,
Duncan, & Ostriker 1988 ; Bechtold 1994). A typical lifetime

1 Current address : Carnegie Observatories, 813 Santa Barbara Street,
Pasadena, CA 91101 ; martini=ociw.edu.

of yr would imply that quasars are rare pheno-t
Q

D 109
mena, arising in at most a small fraction of high-redshift
galaxies. Conversely, a lifetime as low as yr wouldt

Q
D 105

imply that quasars are quite common, suggesting that a
large fraction of present-day galaxies went through a brief
quasar phase in their youth.

The comoving space density '(z) of active quasars at
redshift z is proportional to where is the com-t

Q
n
H
(z), n

Hoving space density of quasar hosts. ““ Demographic ÏÏ
studies of the local black hole population (e.g., Magorrian et
al. 1998 ; Salucci et al. 1999 ; van der Marel 1999) have
opened up one route to determining the typical quasar life-
time : counting the present-day descendants of the quasar
central engines in order to estimate and thus constrainn

H
(z)

by matching '(z). Roughly speaking, the ubiquity oft
Qblack holes in nearby galaxies suggests that quasars are
common and that is likely in the range of 106È107 (e.g.,t

QRichstone et al. 1998 ; Haehnelt, Natarajan, & Rees 1998 ;
Salucci et al. 1999). However, as Richstone et al. (1998)
emphasize, the lifetime estimated in this way depends cru-
cially on the way one links the mass of a present-day black
hole to the luminosity of a high-redshift quasar, which in
turn depends on assumptions about the growth of black
hole masses since the quasar epoch via mergers or low-
efficiency accretion.

In this paper we propose an alternative route to the
quasar lifetime, using measurements of high-redshift quasar
clustering. The underlying idea goes back to the work of
Kaiser (1984) and Bardeen et al. (1986) : in models of struc-
ture formation based on gravitational instability of Gauss-
ian primordial Ñuctuations, the rare, massive objects are
highly biased tracers of the underlying mass distribution,
while more common objects are less strongly biased. There-
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fore, a longer quasar lifetime should imply a more clus-(t
Q
)

tered quasar population, provided that luminous quasars
reside in massive hosts. The speciÐc calculations that we
present in this paper use the Press & Schechter (1974 ; here-
after PS) approximation for the mass function of dark
matter halos and the Mo & White (1996, hereafter MW)
and Jing (1998) approximations for the bias of these halos
as a function of mass. The path from clustering to quasar
lifetime has its own uncertainties ; in particular, our predic-
tions for quasar clustering rely on the assumption that the
luminosity of a quasar during its active phase is a mono-
tonically increasing function of the mass of its host dark
matter halo. However, the assumptions in the clustering
approach are at least very di†erent from those in the black
hole mass function approach, and they can be tested empiri-
cally by detailed studies of quasar clustering as a function of
luminosity and redshift.

Our theoretical model of quasar clustering follows a
general trend in which the study of quasar activity is
embedded in the broader context of galaxy formation and
gravitational growth of structure (e.g., Efstathiou & Rees
1988 ; Turner 1991 ; Haehnelt & Rees 1993 ; Katz et al. 1994 ;
Haehnelt et al. 1998 ; Haiman & Loeb 1998 ; Monaco,
Salucci, & Danese 2000 ; Kau†mann & Haehnelt 2000).
This paper also continues a theme that is prominent in
recent work on the clustering of Lyman-break galaxies,
namely, that the clustering of high-redshift objects is a good
tool for understanding the physics of their formation and
evolution (e.g., Adelberger et al. 1998 ; Katz, Hernquist, &
Weinberg 1999 ; Kolatt et al. 1999 ; Mo, Mao, & White
1999). Our model of the quasar population is idealized, but
by focusing on a simple calculation with clearly deÐned
predictions, we hope to highlight the link between quasar
lifetime and clustering strength. After presenting the theo-
retical results, we draw some inferences from existing esti-
mates of the quasar correlation length. However, our study
is motivated mainly by an anticipation of vastly improved
measurements of quasar clustering from the Two-Degree
Field (2dF) and Sloan quasar surveys (see, e.g., Boyle et al.
1999 ; Fan et al. 1999 ; York et al. 2000). These measure-
ments can test various hypotheses about the origin of
quasar activity, including our primary assumption of a
monotonic relation between quasar luminosity and host
halo mass. If this assumption proves valid, then the Ðrst
major physical result to emerge from the 2dF and Sloan
measurements of high-redshift quasar clustering will be a
new determination of the typical quasar lifetime.

2. METHOD

2.1. Overview
We adopt a simple model of the high-redshift quasar

population that is, doubtless, idealized, but which should be
reasonably accurate for our purpose of computing clus-
tering strength as a function of quasar lifetime. We assume
that all quasars reside in dark matter halos and that a given
halo hosts at most one active quasar at a time. The Ðrst
assumption is highly probable, since a dark matter collapse
is necessary to seed the growth of a black hole, and the
second should be a fair approximation at high redshift,
where the masses of large halos are comparable to the
masses of individual galaxy halos today.

Our strongest and most important assumption is that the
luminosity of a quasar during its active phase is monotoni-

cally related to the mass of its host dark matter halo, and
that all sufficiently massive halos host an active quasar at
some point. More precisely, we assume that an absolute-
magnitudeÈlimited sample of quasars at redshift z samples
the most massive halos present at that redshift, and that the
probability that a halo above the minimum host mass Mminharbors an active quasar at any given time is wheret

Q
/t
H
, t

Qis the average quasar lifetime and is the halo lifetime. Wet
Hcan therefore compute the value of for a quasar popu-Mminlation with comoving space density '(z) from the condition

'(z) \
P
Mmin

=
dMn(M)

t
Q

t
H

. (1)

We compute n(M) using the PS approximation, and we
compute the bias of halos with using the M-WM [ Mminapproximation.

A connection between quasar luminosity and host halo
mass is plausible on theoretical grounds : the cores of
massive halos collapse early, giving black holes time to
grow, and these halos provide larger gas supplies for fueling
activity. It is also plausible on empirical grounds : local
black hole masses are correlated with the host spheroid
luminosity (Magorrian et al. 1998 ; van der Marel 1999 ;
Salucci et al. 1999), which in turn is correlated with stellar
velocity dispersion (Faber & Jackson 1976). A precisely
monotonic relation is certainly an idealization, and we
explore the e†ects of relaxing this assumption in ° 4.1. The
assumption of an approximately monotonic relation can be
tested empirically by searching for the predicted relation
between clustering strength and luminosity, as we discuss in
° 4.3.

The ubiquity of black holes in luminous local spheroids
supports our assumption that all sufficiently massive halos
go through a quasar phase. However, once the quasar space
density declines at z\ 2, the occurrence of quasar activity
must be determined by fueling rather than by the mere
existence of a massive black hole, so it is not plausible that
all large halos host a low-redshift quasar. We therefore
apply our model only to the high-redshift quasar popu-
lation, at zº 2.

We implicitly assume that a quasar turns on at a random
point in the life of its host halo. In this sense, our model
di†ers subtly from that of Haehnelt et al. (1998), who
assume that a quasar turns on when the halo is formed, but
this di†erence is unlikely to have a signiÐcant e†ect on the
predicted clustering. Haehnelt et al. (1998) pointed out that
a longer quasar lifetime would correspond to stronger
quasar clustering because of the association with rarer
peaks of the mass distribution, but they did not calculate
this relation in detail.

Because the quasar lifetime enters our calculation only
through the probability that a halo hosts an activet

Q
/t

Hquasar at a given time, it makes no di†erence whether the
quasar shines continuously or turns on and o† repeatedly
with a short duty cycle (as argued recently by Ciotti &
Ostriker 1999). For our purposes, is the total time thatt

Qthe quasar shines at close to its peak luminosity. We also
assume that quasars radiate isotropically, with a beaming
factor but because a smaller beaming factor simplyf

B
\ 1,

changes the conversion between observed surface density
and intrinsic comoving space density, all our results can be
scaled to smaller average beaming factors by replacing t

Qwith f
B
t
Q
.
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2.2. Notation
All our calculations assume Gaussian primordial Ñuctua-

tions. We denote by P(k) the power spectrum of these Ñuc-
tuations as extrapolated to the present day (z\ 0) by linear
theory. The rms Ñuctuation of the linear density Ðeld on
mass scale M is

p(M)\
C 1
2n2

P
0

=
dkk2P(k)W3 2(kr)

D1@2
, (2)

where

W3 (kr)\ 3(kr sin kr [ cos kr)
(kr)3 , r \

A 3M
4no0

B1@3
, (3)

is the Fourier transform of a spherical top-hat containing
average mass M. The mean density of the universe at z\ 0
is Mpc~3, witho0\ 2.78] 1011)

M
h2 M

_
h 4H0/(100

km s~1 Mpc~1). The rms Ñuctuation can be considered as a
function of either the mass scale M or the equivalent radius
r. We deÐne the normalization of the power spectrum by the
value of h~1 Mpc).p84 p(r \ 8

The rms Ñuctuation of the linear density Ðeld at redshift z
is

p(M, z)\ p(M)D(z) , (4)

where D(z) is the linear growth factor D(z), deÐned such that
D(z\ 0)\ 1. The general expression for the growth factor
in terms of the scaled expansion factor y \ (1] z)~1 is

d(y)\ 5
2

)
M

1
y

dy
dq
P
0

y Ady@
dq
B~3

dy@ , (5)

where D(y)\ d(y) for D(y)\ d(y)/d(1) for)
M

\ 1, )
M

\ 1,
and the dimensionless time variable is (Heathq\ H0 t
1977 ; Carroll, Press, & Turner 1992). If the dominant
energy components are pressureless matter and a cosmo-
logical constant with then the Friedmann)" \ "/3H02,equation implies

Ady
dq
B2\ 1 ] )

M
(y~1[ 1)] )"(y2[ 1) . (6)

For an universe, D(z)\ (1] z)~1. Peebles)
M

\ 1, )" \ 0
(1980, eq. [11.16]) gives an exact analytic expression for
D(z) for the case and Carroll et al. (1992,)

M
\ 1, )" \ 0,

eq. [29]) give an accurate analytic approximation for )" D
0. In our notation, p(M) without any explicit z always refers
to the rms linear mass Ñuctuation on scale M at z\ 0.

At any redshift, we can deÐne a characteristic mass M
*
(z)

by the condition

p[M
*
(z)]\ d

c
(z)\ d

c,0
D(z)

, (7)

where is the threshold density for collapse of a homo-d
c
(z)

geneous spherical perturbation at redshift z. Because we
implicitly deÐne the density Ðeld as ““ existing ÏÏ at z\ 0, the
collapse threshold increases with increasing redshift.d

c
(z)

For an universe,)
M

\ 1, )" \ 0 d
c,0\ 0.15(12n)2@3B 1.69

(see, e.g., Peebles 1980, ° 19). For other models, we incorp-
orate the dependence of on in Appendix A ofd

c,0 )
MNavarro, Frenk, & White (1997), but because )

Mapproaches one at high redshift in all models, this correc-
tion to is less than 2% in all the cases that we consider.d

c

2.3. From the Quasar L ifetime to the Minimum Halo Mass
For a speciÐed quasar lifetime, we compute the minimum

halo mass by matching the comoving number density, '(z),
of observed quasars, accounting for the fact that only a
fraction of host halos will have an active quasar at thet

Q
/t
Htime of observation. The matching condition is equation (1),

or, putting in explicit mass and redshift dependences,

'(z) \
P
Mmin

=
dM

t
Q

t
H
(M, z)

n(M, z) . (8)

If we set the factor to unity. For thet
Q

[ t
H
(M, z), t

Q
/t
Hhalo number density, we use the P-S approximation,

n(M, z)dM \ [
S2

n
o0
M

d
c
(z)

p2(M)
dp(M)
dM

] exp
C
[ d

c
2(z)

2p2(M)
D
dM , (9)

where is the mean density of the universe at z\ 0, p(M)o0is the rms Ñuctuation given by equation (2), and is thed
c
(z)

critical density for collapse by redshift z.
In a gravitational clustering model of structure forma-

tion, halos are constantly growing by accretion and
mergers, so the deÐnition of a ““ halo lifetime ÏÏ is somewhat
ambiguous. For a typical halo survives for)

M
(z) B 1,

roughly a Hubble time before being incorporated into a
substantially larger halo, since the age of the universe at
redshift z is also the characteristic dynamical time of objects
forming at that redshift. Thus, to a Ðrst approximation, one
could simply substitute in equation (9). Wet

H
(M, z) \ t

U
(z)

can do somewhat better by using the extended Press-
Schechter formalism (e.g., Bond et al. 1991 ; Lacey & Cole
1993) to calculate the average halo lifetime, thereby
accounting for the dependence of on the power spectrumt

Hshape and the halo mass. Structure grows more rapidly in
a cosmology with a redder power spectrum, and more
massive halos accrete mass more rapidly.

Equation (2.22) of Lacey & Cole (1993) gives the prob-
ability that a halo of mass existing at time will haveM1 t1been incorporated into a new halo of mass greater than M2by time t2 :

P(S \ S2, u2 o S1, u1) \
1
2

(u1[ 2u2)
u1

exp
C2u2(u1[ u2)

S1

D

]
G
1 [ erf

CS2(u1[ 2u2) ] S1u2
J2S1 S2(S1[ S2)

DH

]1
2
G
1 [ erf

C S1u2[ S2u1
J2S1 S2(S1[ S2)

DH
, (10)

where andS1\p2(M1), S2\ p2(M2), u1\ d
c
(t1), u2\

In this equation, u plays the role of the ““ time ÏÏ vari-d
c
(t2).able, with corresponding to and S playsu2\ u1 t2[ t1,the role of the ““ mass ÏÏ variable, with correspondingS2\ S1to For a halo of mass M existing at time weM2[ M1. t

U
(z),

deÐne the halo lifetime to be the median interval before such
a halo is incorporated into a halo of mass 2M. Thus,

where is the time at which the prob-t
H
(M, z) \ tü

S
[ t

U
(z), tü

Sability in equation (10) equals 0.5, for andS1\ p2(M) S2\
p2(2M). Clearly, other plausible deÐnitions of aret

H
(M, z)

possible, and they would give answers di†erent by factors of
order unity. With our deÐnition, a black hole that lights up
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repeatedly is considered the ““ same ÏÏ quasar as long as the
mass of its host halo remains the same within a factor of 2. If
the host merges into a much larger halo and the black hole
lights up again, it is considered a ““ new ÏÏ quasar. We show
the halo lifetimes for di†erent masses and power spectra
when we discuss speciÐc models below.

For comoving space densities '(z), we adopt values based
on the work of Boyle et al. (1990), Hewett, Foltz, & Cha†ee
(1993), and Warren, Hewett, & Osmer (1994). Since obser-
vations constrain the number of objects per unit redshift per
unit solid angle, the conversion to comoving space density
depends on the values of the cosmological parameters. We
provide the formulae for these conversions in the Appendix,
and in Table A1 we list our adopted values of '(z) and the
surface densities of objects to which these space densities
correspond. In general, '(z) represents the space density of
quasars above some absolute magnitude, corresponding to
a surface density above some apparent magnitude. In ° 4.3
we discuss how to scale our results to predict the clustering
of samples with di†erent measured surface densities.

2.4. From Minimum Halo Mass to Clustering L ength
Halos with are clustered more strongly than theM [ M

*underlying distribution of mass. MW give an approximate
formula,

b(M, z)\ 1 ] 1
d
c,0

C d
c
2(z)

p2(M)
[ 1
D

, (11)

for the bias factor of halos of mass M at redshift z. On large
scales, the ratio of rms Ñuctuations in halo number density
to rms Ñuctuations in mass should be b(M, z). This formula
is derived from an extended Press-Schechter analysis, and it
agrees fairly well with the results of N-body simulations on
scales where the rms mass Ñuctuations are less than unity.
The MW formula becomes less accurate for halos with

i.e., and Jing (1998) provides anM \M
*
, p(M)\ d

c
(z),

empirical correction that Ðts the N-body results,

b(M, z)\
G
1 ] 1

d
c,0

C d
c
2(z)

p2(M)
[ 1
DH

]
Cp4(M)
2d

c
4(z) ] 1

D(0.06~0.02neff)
, (12)

where is the e†ective index of theneff \ 3È6(d ln p/d ln M)
power spectrum on a mass scale M.

According to our model, the quasars at redshift z only
reside in halos of mass The e†ective bias of theseM [Mmin.host halos is the bias factor (eq. [12]) weighted by the
number density and lifetime of the corresponding halos :

beff(Mmin, z)\
P
Mmin

=
dM

b(M, z)n(M, z)
t
H
(M, z)

]
CP

Mmin

=
dM

n(M, z)
t
H
(M, z)

D~1
. (13)

Because the halo number density drops steeply with
increasing mass, the e†ective bias is usually only slightly
larger than the bias factor at the minimum halo mass,
b(Mmin, z).

As our measure of clustering amplitude, we use the radius
of a top-hat sphere in which the rms Ñuctuation ofr1 p

Qquasar number counts (in excess of Poisson Ñuctuations) is

unity. This quantity is similar to the correlation length atr0which the quasar correlation function m(r) is unity, but it can
be more robustly constrained observationally because it
does not require Ðtting the scale-dependence of m(r). For a
power-law correlation function m(r) \ (r/r0)~1.8, r1B 1.4r0.With our adopted approximation for the bias, is deter-r1mined implicitly by the condition

p
Q
(r1, z) \ beff(Mmin, z)p(r1)D(z) \ 1 , (14)

where is the rms linear mass Ñuctuation at z\ 0 inp(r1)spheres of radius For a speciÐed cosmology, mass powerr1.spectrum P(k), quasar lifetime and comoving spacet
Q
,

density '(z), we determine from equation (14), computingr1p(r) from equation (2), D(z) from equation (5), fromMminequation (8), and from equations (12) and (13).beff(Mmin)
2.5. Results for Power-L aw Power Spectra

Models with a power-law power spectrum, P(k)P kn,
provide a useful illustration of our methods, since many
steps of the calculation can be done analytically. For such
models, the dependence of rms Ñuctuation on mass is also a
power law,

p(M) \p(M, z)
D(z)

\ d
c,0

D(z)
C M
M

*(z)

D~(3`n)@6

\ d
c
(z)
C M
M

*(z)

D~(3`n)@6
, (15)

where is the characteristic nonlinear mass deÐned byM
*
(z)

equation (7). With this substitution, the PS mass function
can be expressed as a function of and the dimension-M

*
(z)

less mass variable Integrating to obtain thex \ M/M
*
(z).

comoving number density of objects with mass M [Mminyields

N(M [ Mmin) \
S2

n
An ] 3

6
BA o0

M
*

B

]
P
xmin

=
dx x(n~9)@6 exp

C
[ 1

2
x(n`3)@3

D
. (16)

For power-law models with the ratio of the halo)
M

\ 1,
lifetime to the age of the universe at redshift zt

H
(M, z)

depends only on and has no separate dependenceM/M
*
(z)

on redshift. Figure 1 shows and the ratio as at
H

t
H
/t
Ufunction of for power-law models with n \ 0, [1,M/M

*and [2. More massive halos tend to accrete mass more
quickly and therefore have shorter median lifetimes. At a
given value of the halo lifetime is shorter for lower nM/M

*
,

because a greater amount of large-scale power causes the
typical mass scale of nonlinear structure to grow more
rapidly. Although the calculation of the median halo life-
time via equation (10) is moderately complicated, the
median lifetime for large masses asymptotically approaches
a constant value

t
H
(M, z) \ [2(3`n)@2[ 1]t

U
(z) , M ? M

*
(z), )

M
\ 1 ,

(17)

(Lacey & Cole 1993). We Ðnd below that the predicted
masses of quasar host halos are indeed in this asymptotic
regime for the most plausible parameter choices. The halo
lifetime is longer for than for because Ñuc-)

M
\ 1 )

M
\ 1

tuations grow more slowly in a low-density universe, but t
Hstill asymptotically approaches a constant value. The

dotted curves in Figure 1 illustrate the case of n \ [1,
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FIG. 1.ÈHalo lifetimes vs. for the power-law cosmologies listed in Table 1. Top panels show the halo lifetimes in Gyr for each model at z\ 2, 3,M/M
*and 4. Bottom panels show the ratio of the halo lifetime to the age of the universe. This ratio is independent of redshift for the models, but not for the)

M
\ 1

n \ [1, model.)
M

\ 0.3

The cosmological parameters for all our)
M

\ 0.3, )" \ 0.
models with power-law power spectra are summarized in
Table 1.

The power-law scaling of the rms Ñuctuation amplitude,
equation (15), allows the bias equation (12) to be written

b(M, z)\
A
1 ] 1

d
c,0

GC M
M

*
(z)
D(3`n)@3[ 1

HB

]
G1
2
C M
M

*
(z)
D~2(3`n)@3 ] 1

H(0.06~0.02n)
. (18)

Note that the second factor is very close to 1 for M º M
*
.

Figure 2 shows the bias and the corresponding number-
weighted e†ective bias (eq. [13]) as a function of Mmin/M*

.
For the e†ective bias is only slightly largerMmin[ M

*
,

than since the number density of halos declinesb(Mmin),rapidly with increasing M. As equation (18) shows, the bias
depends more strongly on M for larger n. However, the
exponentially falling tail of the mass function at high M/M

*is much steeper for higher n, as one can see from equation
(16). As a result, the bias at Ðxed comoving number density
is higher for smaller n in the high regime (see Fig. 3M/M

*below).

Under the (good) approximation that the halo lifetime is
given by the asymptotic formula (eq. [17]) in the mass range
of interest, the halo lifetime can be moved outside the inte-
gral of equation (8) for the number density of active quasars.
The implied quasar lifetime as a function of minimum halo
mass is then

t
Q
(Mmin) \

t
H

'(z)
N(M [ Mmin)

, (19)

where is given by equation (16). For theN(M [Mmin)n \ [1 model, we also use the asymptotic value)
M

\ 0.3,
of although this is no longer given by equation (17). Wet

H
,

use a P(k) normalization for the threep8\ 0.5 )
M

\ 1
models and for the model, in approx-p8\ 1.0 )

M
\ 0.3

imate agreement with the constraint on and impliedp8 )
Mby the observed mass function of rich galaxy clusters

(White, Efstathiou, & Frenk 1993 ; Eke, Cole, & Frenk
1996).

Equation (19) implicitly determines givenMmin/M*
(z) t

Q
.

The top panels of Figure 3 show as a functionMmin/M*
(z)

of for z\ 2, 3 and 4 and a constant comoving spacet
Q
/t
Udensity '(z) \ 10~6 h3 Mpc~3. For the cases,)

M
\ 1

where depends only on n and the redshiftt
Q
/t
U

Mmin/M*
,

dependence of arises solely from the presence ofMmin/M*
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TABLE 1

POWER-LAW MODEL PARAMETERS

n p8 h )
M

M
*
(z\ 2) M

*
(z\ 3) M

*
(z\ 4)

(1) (2) (3) (4) (5) (6) (7)

0 . . . . . . 0.5 1.0 1.0 5.87] 1012 3.30] 1012 2.11] 1012
[1 . . . . . . 0.5 1.0 1.0 5.80] 1012 2.45] 1012 1.25] 1012
[1 . . . . . . 1.0 1.0 0.3 5.44] 1012 2.87] 1012 1.70] 1012
[2 . . . . . . 0.5 1.0 1.0 5.59] 108 9.96] 107 2.61] 107

NOTE.ÈParameters of the four power-law cosmological models discussed in
° 2.5. Cols. (1)È(4) list the power spectrum index n, normalization scaled Hubblep8,constant h, and mass density parameters Cols. (5)È(7) list the values of (eq.)

M
. M

*[7]) at z\ 2, 3, and 4, in units of h~1 M
_

.

in the number density equation (16). As increasesM
*

M
*with decreasing redshift, the value of mustxmin\Mmin/M*decrease to keep '(z) constant. Smaller values of n lead to

higher values of because of the gentler fallo† ofMmin/M*the mass function at large The n \ [2 curvesM/M
*
.

become Ñat at the largest values of because beginst
Q
/t
U

t
Qto exceed the halo lifetime implying that all halos abovet

H
,

are occupied by quasars. The di†erence between theMminopen and curves for n \ [1 reÑects mainly the)
M

\ 1
larger values of and D(z) in the open model, which leadp8to a lower value of in the mass function (eq. [16])o0/M*and therefore require a lower value of to compen-Mmin/M*sate.

The middle panels of Figure 3 show the e†ective bias,
for the power-law models. As alreadybeff(Mmin, z),

remarked, the bias at Ðxed space density and is highert
Q
/t
Ufor redder power spectra (smaller n) because of the much

higher values of despite the partially counter-Mmin/M*
,

balancing e†ect of the stronger dependence of bias on mass
at larger n. Physically, the higher bias for redder spectra
reÑects the greater inÑuence of the large-scale environment
on the amplitude of small-scale Ñuctuations. For a given

FIG. 2.ÈBias vs. for the power-law models with n \ 0 (solidM/M
*line), [1 (short-dashed line), and [2 (long-dashed line). Lower curves show

computed from eq. (12), and upper curves show the number-b(Mmin)weighted e†ective bias (eq. [13]).

model, the bias increases with increasing redshift, reÑecting
the increase in the change, however, is quiteMmin/M*

;
modest.

The rms number count Ñuctuation on comoving scale r is

p
Q
(r, z) \ beff(Mmin, z)p(r, z)

\ beff(Mmin, z)p8D(z)
A r
8 h~1 Mpc

B~(3`n)@2
. (20)

The quasar clustering length is the scale on which thisr1rms Ñuctuation amplitude is unity,

r1\ (8 h~1 Mpc)[beff(Mmin, z)p8D(z)]2@(3`n) . (21)

The bottom panels of Figure 3 present the main result of
this section, the dependence of on quasar lifetime for ourr1four power-law models at z\ 2, 3, and 4. As anticipated,
the quasar clustering length shows a strong dependence on
quasar lifetime. The relation between and depends onr1 t

Qthe power spectrum index n, so the shape of the power
spectrum must be known fairly well to determine fromt

Qmeasurements of The clustering at Ðxed is substan-r1. t
Q
/t
Utially stronger in the open n \ [1 model than in the )

M
\

1 model, because the underlying mass distribution is more
strongly clustered [larger and D(z)].p8For a speciÐed value of the cluster mass function)

M
,

imposes a reasonably tight constraint on the normalization,
It is nonetheless interesting to explore the sensitivity ofp8.the predicted quasar clustering to this normalization. More

intuitive than the is the equivalent relationp8-dependence
between the quasar clustering length and the corresponding
clustering length of the underlying mass distribution at the
same redshift,

r1m \ (8 h~1 Mpc)[p8 D(z)]2@(3`n) . (22)

Figure 4 plots this relation at z\ 3 for the four power-law
cosmologies and (top curve), andt

Q
\ t

U
0.1t

U
, 0.01t

U
,

(bottom curve), for values of ranging from 0.2 to0.001t
U

p82.0. The values of that correspond to the values inr1m p8Table 1 are marked with open circles. If the bias did not
change with then the quasar clustering length wouldr1m, r1grow in proportion to and the curves in Figure 4 wouldr1m,
parallel the diagonal of the box, which has a slope of 1.0.
However, increasing increases and thereforer1m M

*
,

requires a lower value of to match the quasarMmin/M*space density. The correspondingly lower bias partially
compensates for the larger making the curves in Figurer1m,
4 shallower than the box diagonal. For n \ 0 and large

(the highest solid curve), the minimum mass liest
Q
/t

U
Mminfar out on the tail of a steeply falling mass function. In this

regime, a change in requires only a small change inM
*
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FIG. 3.ÈHalo mass, bias, and clustering length for the power-law models, as a function of quasar lifetime. Top panels show the minimum mass, Mmin ,required to obtain a space density of '(z)\ 10~6 h3 Mpc~3 for a given value of at z\ 2, 3, and 4. Middle panels show the corresponding e†ective bias,t
Q
/t
Ufor halos Bottom panels show the clustering lengths, as a function of The clustering length is the radius of a top-hat sphere in which rmsbeff, Mmin . r1, t
Q
/t

U
.

number count Ñuctuations (in excess of Poisson) are unity. For a power-law correlation function m(r)\ (r/r0)~1.8, r1B 1.4r0.

to compensate, so there is little change in withMmin/M*
beffand the curves approach the lines that wouldr1m, r1P r1mapply for constant bias. A similar argument explains the

steepening of all curves toward low where the smallr1m,
values of put the value of farther out on the tail ofM

*
Mminthe mass function.

3. RESULTS FOR COLD DARK MATTER COSMOLOGIES

The results of ° 2.5 conÐrm our initial contention that
quasar clustering can provide a good diagnostic of the
typical quasar lifetime. However, they show that the pre-
dicted clustering length also depends on the shape of the
mass power spectrum and on the value of which inÑu-)

M
,

ences the cluster normalization of at z\ 0 and (togetherp8with determines the growth factor D(z). Accurate deter-)")
mination of from measurements of quasar clusteringt

Qtherefore requires reasonably good knowledge of the under-
lying cosmology. Fortunately, many lines of evidence now
point toward a Ñat, low-density model based on inÑation
and cold dark matter (see, e.g., the review by Bahcall et al.
1999). In particular, recent studies of the power spectrum of

the Lya forest imply that the matter power spectrum has the
shape and amplitude predicted by COBE- and cluster-
normalized cold dark matter (CDM) models with )

M
D 0.4

at the redshifts and length scales relevant to the prediction
of quasar clustering (Croft et al. 1999 ; Weinberg et al. 1999 ;
McDonald et al. 2000 ; Phillips et al. 2000).

For the power spectrum of our CDM models, we adopt
with scale-invariant primeval inÑa-P(k) P knpT 2(k) (n

p
\ 1)

tionary Ñuctuations and the transfer function param-
eterization of Bardeen et al. (1986),

T (k) \ ln (1] 2.34q)
2.34q

[1] 3.89q ] (16.1q)2

] (5.46q)3] (6.71q)4]~1@4 . (23)

Here q \ k/! and !, with units of (h~1 Mpc)~1, is the CDM
shape parameter, given approximately by !\

(Sugiyama 1995). We cal-)
M

h exp [[)
b
[ (2h)1@2)

b
/)

M
]

culate p(M) and (dp/dM) by numerical integration of this
power spectrum.

We consider Ðve di†erent CDM models with the parame-
ters listed in Table 2. These models are chosen to illustrate a
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FIG. 4.ÈDependence of the quasar clustering length, on the massr1Q,
clustering length, for the four power-law models at z\ 3. In each case,r1m,
the four lines show, from top to bottom, the lifetimes t

Q
\ t

U
, 0.1t

U
, 0.01t

U
,

and Results are computed for normalizations running from0.001t
U
. p8\

0.2 to Open circles show and for our standard choices ofp8\ 2.0. r1m r1Qlisted in Table 1. If bias were independent of the lines wouldp8, r1m,
parallel the diagonal of the box, which has a slope of 1.0.

range of cosmological inputs and also to isolate the e†ects
of di†erent parameters on quasar clustering predictions.
The qCDM, OCDM, and "CDM models have !\ 0.2, in
approximate agreement with the shape parameter estimated
from galaxy surveys (e.g., Baugh & Efstathiou 1993 ;
Peacock & Dodds 1994), and they have values consistentp8with the cluster mass function constraints of Eke et al.
(1996). The qCDM and "CDM models are approximately
COBE-normalized. COBE normalization would imply a
lower for OCDM, but a slight increase in could raisep8 n

pwithout having a large impact on the shape of P(k) at thep8relevant scales. The OCDM and "CDM models are consis-
tent with the Lya forest power spectrum measurements of
Croft et al. (1999), but the qCDM model is not. OCDM is
inconsistent with the observed location of the Ðrst acoustic
peak in the cosmic microwave background anisotropy
spectrum (e.g., Miller et al. 1999 ; Melchiorri et al. 2000 ;
Tegmark & Zaldarriaga 2000), and of the three models,
only "CDM is consistent with the Hubble diagram of Type
Ia supernovae (Riess et al. 1998 ; Perlmutter et al. 1999).

We use the comparison between the qCDM and SCDM
models, with !\ 0.2 and !\ 0.5, respectively, to illustrate
the impact of the power-spectrum shape for Ðxed and)

MThe SCDM model is cluster-normalized, but itsp8. p8\ 0.5
is well below the value of implied by COBE forp8B 1.2

!\ 0.5 (e.g., Bunn & White 1997). The OCDM andn
p
\ 1,

"CDM models have the same P(k) shape and the same P(k)
amplitude at z\ 0, but at high redshift the OCDM model
has stronger Ñuctuations as a result of a larger D(z). We
therefore include the model "CDM2, which has chosenp8to yield the same power spectrum amplitude as OCDM at
z\ 3. Di†erences between OCDM and "CDM2 isolate the
impact of a cosmological constant for Ðxed high-redshift
mass clustering.

Figure 5 shows in Gyr (top panels) and (bottomt
H

t
H
/t
Upanels) as a function of for the CDM models atM/M

*z\ 2, 3, and 4. In contrast to the power-law models shown
in Figure 1, the ratio does not approach a constantt

H
/t
Uvalue but instead increases at very large ThisM/M

*
.

increase can be understood with reference to the power-law
case : the e†ective power-law index, neff \ 3È6 (d ln p/
d ln M), increases with increasing mass in a CDM spectrum,
and larger values of correspond to slower growth ofneffmass scales (and larger as shown in Figure 1. Thet

H
/t
U
),

di†erence between the SCDM and qCDM curves in Figure
5 reÑects the higher values of for the !\ 0.5 powerneffspectrum. The di†erences between the various !\ 0.2
models largely reÑect the di†erences in and hence theM

*
,

di†erences in at Ðxed and they also reÑect theneff M/M
*
,

di†erences in Ñuctuation growth rates.
Figure 6 plots the e†ective bias against for theMmin/M*Ðve CDM models at z\ 3. Figure 2 showed that the value

of at Ðxed is higher for larger n. The lines inbeff Mmin/M*Figure 6 curve upward because increases with massneffscale, and to a good approximation the value of in thebeffCDM models equals the value of at the samebeff Mmin/M*in a power-law model of index The di†erenceneff(Mmin).between SCDM and qCDM in Figure 6 therefore reÑects
the higher values in SCDM, and the di†erences amongneffthe other models reÑect the di†erent values of andM

*
,

hence the di†erent values of at Ðxedneff Mmin/M*
.

The top three panels of Figure 7 show the dependence of
on at z\ 2, 3, and 4 ; the values of areMmin/M*

t
Q

M
*listed in Table 2. The calculation of via equation (8)Mminincorporates both the dependence of halo lifetime on mass

and the inÑuence of and on the value of '(z) inferred)
M

)"from the quasar surface density (as discussed in the
Appendix). The two models have the lowest values)

M
\ 1

of because of their lower and D(z), so they require theM
*

p8largest to match the observed '(z). The value ofMmin/M*
TABLE 2

CDM MODEL PARAMETERS

Model p8 h )
M

)" ! M
*
(z\ 2) M

*
(z\ 3) M

*
(z\ 4)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

SCDM . . . . . . . 0.5 0.5 1.0 0.0 0.5 3.58] 109 2.26] 108 1.86] 107
qCDM . . . . . . . . 0.5 0.5 1.0 0.0 0.2 9.44] 106 1.09] 105 1.87] 103
OCDM . . . . . . . 0.9 0.65 0.3 0.0 0.2 1.50] 1011 2.70] 1010 5.60] 109
"CDM . . . . . . . 0.9 0.65 0.3 0.7 0.2 2.70] 1010 2.03] 109 1.91] 108
"CDM2 . . . . . . 1.17 0.65 0.3 0.7 0.2 2.16] 1011 2.34] 1010 3.10] 109

NOTE.ÈParameters of the Ðve CDM models discussed in ° 3. Col. (1) lists the model name, cols. (2)È(5)
the power spectrum normalization and cosmological parameters, and col. (6) the power spectrum shape
parameter (see eq. [23]). Cols. (7)-(9) list the values of (eq. [7]) at z\ 2, 3, and 4, in units ofM

*
h~1 M

_
.
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FIG. 5.ÈHalo lifetime as a function of as in Fig. 1, for the CDM models with parameters listed in Table 2M/M
*
,

FIG. 6.ÈE†ective bias as a function of minimum halo mass, as in Fig. 2,
for the CDM models at z\ 3.

is smaller for "CDM than for OCDM because D(z) isM
*smaller for the Ñat model, so "CDM requires larger

The higher normalization of the "CDM2 modelMmin/M*
.

largely removes this di†erence, since is matchedp8D(z\ 3)
to that of the OCDM model, but "CDM2 still has a slightly
lower because of the inÑuence of on As aM

*
)" d

c
(z).

result, the curve for "CDM2 lies just above thatMmin/M*of OCDM at z\ 3.
The middle panels of Figure 7 show the e†ective bias

values, which display the same relative dependence on
and cosmology as the values. Becauset

Q
Mmin/M*in all the CDM models, even for as low asMmin/M*

[ 1 t
Q105 yr, the MW bias formula (eq. [11]) yields nearly identi-

cal results to JingÏs (1998) corrected formula (eq. [12]).
The bottom panels of Figure 7 present the main results of

this paper : the relation between the clustering length andr1the quasar lifetime for CDM models at z\ 2, 3, and 4.t
QThe clustering length is an increasing function of quasar

lifetime for the reasons outlined in ° 1 and detailed in ° 2. A
longer implies that quasar host halos are rarer, moret

Qhighly biased objects. The change in the versus rela-r1 t
Qtion with redshift reÑects the evolution of the quasar space

density and of the underlying mass Ñuctuations. For a given
model and the predicted quasar clustering is weakest att

Q
,
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FIG. 7.ÈMinimum halo mass, e†ective bias, and clustering length as a function of for the CDM models at z\ 2, 3, and 4. Format is the same as int
Q
,

Fig. 3.

z\ 3, the peak of the quasar space density. The smaller
quasar abundance at z\ 4 implies a higher bias of the host
halo population, which more than compensates for the
slightly weaker mass clustering. The clustering length grows
between z\ 3 and z\ 2 because of both the drop in quasar
space density and the growth of mass clustering. The r1versus relation becomes Ñat at the largest for thet

Q
t
QSCDM model at z\ 4 and for the qCDM model at z\ 3

and 4, where exceeds the halo lifetime and thet
Q

t
H
(Mmin),

value of required to match '(z) therefore becomesMminindependent of t
Q
.

The di†erences between models reÑect the di†erences in
bias factors discussed above and the di†erences in the mass
clustering. There are also di†erences in the values of '(z)
inferred from the observed quasar surface density (see
Appendix), but these have relatively little e†ect. The main
separation in Figure 7 is between the low-density models
and the models, which have weaker mass clustering)

M
\ 1

TABLE 3

VS. FITTING COEFFICIENTSr1 t
Q

z\ 2 z\ 3 z\ 4

MODEL a0 a1 a2 a0 a1 a2 a0 a1 a2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SCDM . . . . . . . 12.47 2.437 0.1001 10.62 1.932 0.0601 11.26 1.590 [0.0042
qCDM . . . . . . . . 16.54 3.163 0.1662 13.89 2.422 0.0882 14.48 1.964 [0.0166
OCDM . . . . . . . 27.18 7.002 0.7798 25.32 6.029 0.5347 30.26 5.457 0.1640
"CDM . . . . . . . 26.79 6.173 0.4913 23.48 4.974 0.3122 26.12 4.248 0.0823
"CDM2 . . . . . . 29.84 7.441 0.7465 26.51 6.093 0.4840 30.23 5.274 0.1393

NOTE.ÈCoefficients for polynomial Ðts (eq. [24]) to the predicted relations between quasar lifetime and
clustering length shown in Fig. 7. Col. (1) lists the model name; cols. (2)È(4) the coefficients for z\ 2 ; cols. (5)È(7)
the coefficients for z\ 3 ; and cols. (8)È(10) the coefficients for z\ 4.
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because of their lower values of and D(z). Thep8 )
M

\ 1
models have larger bias factors, but these are not enough to
compensate for the smaller mass Ñuctuations. The versusr1relations are also shallower for the models,t
Q

)
M

\ 1
because the values of lie farther out on the steep,Mminhigh-mass tail of the mass function, where a smaller change
in can make up for the same change in The threeMmin t

Q
.

low-density models yield very similar predictions.
To facilitate comparison of future observational results to

our predictions, we have Ðtted polynomials of the form

r1\

4
5
6
0
0
a0]a1 log10 t

Q
log10 t

Q
º[1.5 ,

a0]a1 log10 t
Q
]a2(log10 t

Q
]1.5)2 log10 t

Q
\[1.5 ,

(24)

to each of the versus curves shown in Figure 7. Ther1 t
Qvalues of the coefficients are given in Table 3, and the coeffi-

cients and have the same value over the entire rangea0 a1in These Ðts are accurate to better than 3% in fort
Q
. r1given or to better than 10% in given for all casest

Q
, t

Q
r1,except the SCDM and qCDM models at z\ 4, where the

maximum errors are 3% in given and 20% in for ar1 t
Q

t
Qgiven r1.

4. DISCUSSION

4.1. Sensitivity to Model Details
As already mentioned in ° 2.3, the deÐnition of a ““ halo

lifetime ÏÏ is somewhat ambiguous. We have so far adopted a
deÐnition of as the median time before a halo of mass Mt

His incorporated into a halo of mass 2M. If we increase this
mass ratio from 2 to 5 (a rather extreme value), then the
typical halo lifetimes in our CDM models increase by
factors of 2È4. Since it is the ratio that enters ourt

Q
/t

Hdetermination of (eq. [8]), and hence Ðxes the biasMminfactor, this change in would require an equal increase int
Hto maintain the same clustering length We concludet

Q
r1.that the ambiguity in halo lifetime deÐnition introduces a

factor of D2 uncertainty in the determination of fromt
Qclustering measurements, in the context of our model.

We have also assumed that quasar luminosity is perfectly
correlated with host halo mass, so that matching the space
density of an absolute-magnitudeÈlimited sample imposes a
sharp cuto† in the host mass distribution at IfM \ Mmin.there is some scatter in the luminosityÈhost mass relation,
then some halos with will host a quasar aboveM \ Mminthe absolute-magnitude limit and some halos with M [

will not. We can model such an e†ect by introducing aMminsoft cuto† into equation (8) :

'(z)\
P
0

=
dMg(M)

t
Q

t
H
(M, z)

n(M, z) , (25)

where

g(M)\

4

5

6

0
0

0 for M \
Mmin

a
,

A a
Mmin(a2[ 1)

B
M [

1

a2[ 1
for

Mmin
a

\ M \ aMmin,

1 for M [ aMmin,
(26)

and a [ 1. Adopting a soft cuto† slightly decreases Mminand, more signiÐcantly, reduces the value of by allowingbeffsome quasars to reside in lower mass halos, which are less
strongly biased. Quantitatively, we Ðnd that setting a \ 2,
which corresponds to including halos down to M \ Mmin/2,
decreases the clustering length by for the shortest[6%
quasar lifetimes and for the longest quasar lifetimes.[10%
Matching a Ðxed with an a \ 2 cuto† requires lifetimesr1that are longer by a factor of D1È1.5 at short andt

Q
D2È2.5 at long Longer lifetimes are more sensitive tot

Q
.

scatter in the luminosityÈhost mass relation because beffdepends more strongly on for these rarer objects.Mmin/M*The assumption of a perfectly monotonic relation between
quasar luminosity and host mass leads to the smallest fort

Qa given Thus, if any scatter does exist in this relation, ourr1.model predictions for e†ectively become lower limits tot
Qthe quasar lifetime.

Another simpliÐcation of our model is the assumption
that a quasar is either ““ on ÏÏ or ““ o† ÏÏ ; each quasar shines at
luminosity L for time perhaps divided among severalt

Q
,

episodes of activity, and the rest of the time it is too faint to
appear in a luminous quasar sample. More realistically,
variations in the accretion rate and radiative efficiency will
cause the quasar luminosity to vary, especially if the black
hole mass itself grows signiÐcantly during the luminous
phase. Nonetheless, the maximum luminosity will still
depend on the maximum black hole mass. At a given time,
the luminous quasar population will include black holes
shining at close to their maximum luminosity and ““ faded ÏÏ
black holes of higher mass. Because the host halos lie on the
steeply falling tail of the mass function, the Ðrst component
of the population always dominates over the second, and
we therefore expect our clustering method to yield the time

for which a quasar shines within a factor D2 of its peakt
Qluminosity. More strongly faded quasars are too rare to
make much di†erence to the space density or e†ective bias.

To illustrate this point, we consider the model of Haeh-
nelt et al. (1998) in which a quasar hosted by a halo of mass
M has a luminosity history withL (t) \ L 0(M) exp ([t/t

Q
),

a maximum luminosity proportional to theL 0(M) \ aM
halo mass. In this model, the time that a quasar shines
above the luminosity threshold, of aL min\ L 0(Mmin),survey is the visibility time, We cant

Q
@ \ t

Q
ln (M/Mmin).calculate for a given space density by substitutingMmin t

Q
@

for in equation (8), then calculate by multi-t
Q

beff(Mmin)plying the integrands in the numerator and denominator of
equation (13) by the visibility weighting factor ln (M/Mmin).The middle curves in Figure 8 compare for the on-o†r1(tQ)
(solid line) and exponential decay (dotted line) models, in the
case of "CDM at z\ 3 with our standard '(z). The curves
are remarkably similar, showing that the lifetime inferred
from clustering assuming an on-o† model would be close to
the e-folding timescale in an exponential decay model. The
curves for the exponential decay model are slightly shallo-
wer because at low (low the mass function is not asMmin t

Q
)

steep, allowing faded quasars in more massive halos to
make a larger contribution to and thereby raisebeff r1.Although results for a di†erent functional form of L (M, t)
would di†er in detail, we would expect the lifetime inferred
from clustering to be close to the ““ half-maximum ÏÏ width of
the typical luminosity history, for the general reasons dis-
cussed above.

As mentioned in ° 2.1, we assume that quasars radiate
isotropically. If they radiate instead with an average
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FIG. 8.ÈClustering length vs. for the "CDM model at z\ 3 for twot
Qdi†erent models of quasar luminosity evolution at three di†erent space

densities '(z). The ““ on-o† ÏÏ model (solid lines) assumes that the quasar
luminosity is constant throughout its lifetime and is the standard modelt

Qwe discuss in this paper. The central line shows results for the "CDM
model at z\ 3 with our standard '(z). The other solid curves, related to
the Ðrst by simple horizontal shifts, show results for space densities di†er-
ent by factors of 10 and 1/10 (bottom and top, respectively). In the exponen-
tial model (dotted lines), the quasar luminosity starts at some maximum
luminosity proportional to the halo mass and decays with an e-folding
timescale The middle line again corresponds to our standard '(z), andt

Q
.

the other two dotted curves show results for space densities di†erent by
factors of 10 and 1/10 (bottom and top, respectively).

beaming factor then the true value of '(z) is largerf
B
\ 1,

than the observed value by a factor The implied life-f
B
~1.

time for a given would therefore be larger by a factorr1 f
B
~1

as well.

4.2. Interpretation of Existing Data
After several attempts (Osmer 1981 ; Webster 1982),

quasar clustering was Ðrst detected by Shaver (1984), and
later by Shanks et al. (1987) and Iovino & Shaver (1988).
However, measurements of quasar clustering are still ham-
pered by small, sparse samples, and even the best studies to
date yield detections with only several p signiÐcance. Given
the limitations of current data, it is not surprising that dif-
ferent authors reach di†erent conclusions about the
strength of clustering and its evolution. Analyzing a com-
bined sample of quasars with 0.3 \ z\ 2.2 from the
Durham/AAT UVX Survey, the Canada-France-Hawaii
Telescope survey, and the Large Bright Quasar Sample,
Shanks & Boyle (1994) and Croom & Shanks (1996) Ðnd a
reasonable Ðt to the data with an model that has)

M
\ 1

cB 1.8, and a constant comoving corre-m(r)\ (r/r0)~c,
lation length h~1 Mpc. La Franca, Andreani, & Cris-r0\ 6
tiani (1998) report a higher correlation length, r0\ 9.1

h~1 Mpc, for a c\ 1.8 power law, in their^ 2.0
1.4\ z\ 2.2 sample.

If we adopt h~1 Mpc at z\ 2 and a correspondingr0B 8
h~1 Mpc, then the implied quasar lifetime is D107.5r1B 11

yr for the qCDM model and D108 yr for SCDM. The r0values quoted above are for and because quasar)
M

\ 1,
pair separations are measured in angle and redshift, they
should be increased by a factor of D1.5 in an )

M
\ 0.3,

universe and a factor of D1.3 in an)" \ 0.7 )
M

\ 0.3,
universe (roughly the inverse cube roots of the)" \ 0

volume ratios listed in Table A1). Adopting h~1r1B 16
Mpc implies a lifetime of yr in our low-t

Q
D 107È107.5

density models. However, these numbers must be con-
sidered highly uncertain because of the limitations of
current data and because the space densities of the various
observational samples do not necessarily match those
assumed in our model predictions.

All these measurements are based mainly on quasars with
z\ 2. At higher redshift, (1997) and Stephens et al.Kundic�
(1997) have investigated clustering in the Palomar Transit
Grism Survey (PTGS; Schneider, Schmidt, & Gunn 1994).
Fitting a c\ 1.8 power law, Stephens et al. (1997) Ðnd r0 \
17.5^ 7.5 h~1 Mpc for z[ 2.7. This high correlation length
(inferred from the presence of three close pairs in a sample
of 90 quasars) could be a statistical Ñuke, but in the context
of our model it is tempting to see it as a consequence of the
high luminosity threshold of the PTGS survey, which might
lead it to pick out the most strongly clustered members of
the quasar population.

4.3. Prospects
The 2dF (Boyle et al. 2000 ; Shanks et al. 2000) and Sloan

(York et al. 2000) quasar surveys will transform the study of
quasar clustering over the next several years, yielding high-
precision measurements for a wide range of redshifts. These
measurements will allow good determination of the typical
quasar lifetime, in the context of the model presentedt

Q
,

here. They will also test the key assumption of this model,
the monotonic relation between quasar luminosity and host
halo mass, by characterizing the clustering as a function of
redshift and, especially, as a function of quasar absolute
magnitude.

Figure 8 illustrates this test for the "CDM model at
z\ 3. Brighter quasars have a lower space density '(z), so
they should have a higher minimum host halo mass Mmin,and, because of the higher bias of more massive halos, they
should exhibit stronger clustering. Fainter, more numerous
quasars should exhibit weaker clustering. Figure 8 shows
the predicted versus relation for samples with 1/10 andr1 t

Q10 times the space density of our standard case (3.42
quasars per deg2 per unit redshift ; see Table A1). In our
standard on-o† model (solid lines), a change in '(z) in equa-
tion (8) can be exactly compensated for by changing byt

Qthe same factor, so the solid curves in Figure 8 are simply
shifted horizontally relative to each other. Our predictions
in Figure 7 (see eq. [24]) can therefore be transformed to
any quasar space density by changing in proportion tot

Q'(z). In the exponential decay model (dotted lines), the
scaling of with '(z) is no longer exact, although it is still at

Qgood approximation.
If there is a large dispersion in the relation between

quasar luminosity and host halo mass, then the dependence
of clustering strength on quasar space density will be much
weaker than Figure 8 predicts. Detection of the predicted
trend between luminosity and clustering, or a deÐnitive
demonstration of its absence, would itself provide an impor-
tant insight into the nature of quasar host halos. More
generally, the parameters of a model that incorporates
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scatter (such as the a prescription of eq. [26]) could be
determined by matching the observed relation between r1and '(z).

If the observations do support a tight correlation
between luminosity and host halo mass, then the Ðrst pro-
perty of quasars to emerge from the 2dF and Sloan clus-
tering studies will be the typical lifetime For thet

Q
.

low-density models in Figure 7, the slope of the correlation
between and is D10, so a determination ofr1 log10 t

Qwith a precision of 2 h~1 Mpc would constrain to ar1 t
Qfactor of 100.2B 1.6, for a speciÐed cosmology. By the time

these quasar surveys are complete, a variety of observations
may have constrained cosmological parameters to the point
that they contribute negligible uncertainty to this con-
straint. Instead, the uncertainty in will probably be domi-t

Qnated by the limitations of the quasar population model,
e.g., the approximate nature of the assumptions that the
quasar luminosity tracks the halo mass, that there is only
one quasar per halo, and that the average lifetime ist

Qindependent of quasar luminosity. These assumptions can
be tested empirically to some degree, but not perfectly.
Despite these limitations, it seems realistic to hope that t

Qcan be constrained to a factor of 3 or better by high-
precision clustering measurements, a vast improvement
over the current situation. It is worth reiterating that our
assumption of a perfectly monotonic relation between lumi-
nosity and halo mass leads to the smallest for ant

Qobserved since with a shorter lifetime there are simplyr1,not enough massive, highly biased halos to host the quasar
population.

A determination of to a factor of 3 will be sufficient tot
Qaddress fundamental issues regarding the physics of quasars

and galactic nuclei. Comparison of to the Salpeter time-t
Qscale will answer one of the most basic questions about

supermassive black holes : do they shine as they grow? If
yr, the e-folding timescale for vD 0.1,t

Q
Z 4 ] 107 L D L E,then quasar black holes increase their mass by a substantial

factor during their optically bright phase. If is mucht
Qshorter than this, then the black holes must accrete most of

their mass at low efficiency, or while shining at AL > L E.short lifetime could indicate an important role for
advection-dominated accretion (Narayan, Mahadevan, &
Quatert 1998 and references therein), or it could indicate
that black holes acquire much of their mass through

mergers with other black holes, emitting binding energy in
the form of gravitational waves rather than electromagnetic
waves. A determination of would also resolve the ques-t

Qtion of whether the black holes in the nuclei of local galaxies
are the remnants of dead quasars. For example, Richstone
et al. (1998) infer a lifetime of yr by matching thet

Q
D 106

space density of local spheroids that host black holes of
mass to the space density of high-redshiftM Z 4 ] 108 M

_quasars of luminosity ergs s~1. If clus-L E(M) Z 6 ] 1046
tering implies a much longer lifetime, then these numerous
local black holes may once have powered active nuclei, but
they were not the engines of the luminous, rare quasars.

We have assumed in our model that quasar activity is a
random event in the life of the parent halo. Quasar activity
might instead be triggered by a major merger, by a weaker
““ Ñy-by ÏÏ interaction, or by the Ðrst burst of star formation
in the host galaxy. Regardless of the trigger mechanism, the
lifetime will be the dominant factor in determining the
strength of high-redshift quasar clustering, if our assumed
link between luminosity and halo mass holds. However,
di†erent triggering mechanisms might be diagnosed by
more subtle clustering properties, such as features in the
correlation function at small separations, or higher order
correlations. At low redshift, where the evolution of the
quasar population is driven by fueling rather than by black
hole growth, the nature of the triggering mechanism might
play a major role in determining quasarsÏ clustering proper-
ties. The calculations presented here illustrate the promise
of quasar clustering as a tool for testing ideas about quasar
physics, a promise that should be fulÐlled by the large
quasar surveys now under way.
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conclusions are consistent with theirs, although the
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comparison of results. This work was supported in part by
NSF grant AST 96-16822 and NASA grant NAG5-3525.

APPENDIX A

CONVERTING FROM OBSERVED QUASAR NUMBERS TO '(z)

The observed quantity that is measured in studies of quasar clustering and the quasar space density is the number of
sources brighter than a given apparent magnitude m per unit redshift per unit solid angle on the sky. This surface density per
unit redshift can be converted into a comoving space density of objects brighter than a given absolute magnitude M,

'(z,\ M) \ dN(\m)
d) dz

d) dz
dV

c
(z)

, (A1)

where is the di†erential comoving volume element corresponding to d) dz. Following the notation in Hogg (1999), thisdV
c
(z)

volume element is

dV
c
(z) \ D

H
D

M
2

E(z)
d) dz , (A2)
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TABLE A1

QUASAR SPACE AND SURFACE DENSITY

z '(z)
dN

dz d)
f (1.0, 0.0)

f (0.3, 0.0)

f (1.0, 0.0)

f (0.3, 0.7)
(1) (2) (3) (4) (5)

2 . . . . . . . . . . . . . . . 1.889] 10~6 2.132 0.425 0.279
3 . . . . . . . . . . . . . . . 3.331] 10~6 3.417 0.339 0.253
4 . . . . . . . . . . . . . . . 3.200] 10~7 0.287 0.287 0.241

NOTE.ÈAdopted values of the space density of quasars at z\ 2, 3, and 4, and
cosmological conversion factors. Values of '(z) in col. (2) are from Warren et al.
1994 (assuming for quasars with (absolute continuum Ñux)

M
\ 1) M

c
\[24.5

at 1216 converted from their adopted h \ 0.75 to h3 Mpc~3. Col. (3) lists theA� ),
abundance of quasars in number per deg2 per unit redshift to which the space
density in col. (2) corresponds. Cols. (4) and (5) contain the ratios of the factors

deÐned in eq. (A6) needed to convert the space density in col. (2), whichf ()
M

, )")
is valid for to space densities for the OCDM and "CDM models, respec-)

M
\ 1,

tively.

where is the Hubble distance, is the transverse comoving distance,D
H

\ c/H0 D
M

D
M

\

4

5

6

0
0
D

H

1

J)
k

sinh
A
J)

k

D
c

D
H

B
for )

k
[ 0 ,

D
H

P
0

z dz@
E(z@)

for )
k
\ 0 ,

D
H

1

J o)
k
o

sin
A
J o)

k
o
D

c
D

H

B
for )

k
\ 0 ,

(A3)

and where For and the di†erential comovingE(z)\ [)
M
(1 ] z)3] )

k
(1 ] z)2] )"]1@2, )

k
\ 1 [ )

M
[ )". )

M
\ 1 )

k
\ 0,

volume element is

dV
C
(z)\ 4

A c
H0

B3
(1] z)~3@2

A
1 [ 1

J1 ] z

B2
d) dz (A4)

per steradian per unit redshift.
The fact that depends on the cosmological parameters means that a given measured surface density of sourcesdV

c
(z)

corresponds to a di†erent comoving space density for di†erent cosmological model parameters. The space density of quasars
is commonly quoted for an universe. To convert this space density (in units of h3 Mpc~3) into the space density for a)

M
\ 1

model with di†erent values of and requires a correction of the form)
M

)"

'(z, )
M

, )") \ '(z, )
M
@ , )"@ )

f (z, )
M
@ , )"@ )

f (z, )
M

, )")
, (A5)

where

f (z, )
M

, )") \ D
H

D
M
2

E(z)
. (A6)

This procedure converts the reported space density under one set of cosmological parameters back into the observed surface
density and then converts the surface density into the space density for the new set of cosmological parameters. In the
notation of Popowski et al. (1998), f (z, where f and g are given by their equations (5) and (6), respectively.)

M
, )")\ gf 2,

In Table A1 we list the factors to convert the space density in column (2), which is listed for to the)
M

\ 1, )" \ 0,
corresponding space densities for and The factors in Table A1 are all less than unity)

M
\ 0.3, )" \ 0.0 )

M
\ 0.3, )" \ 0.7.

because the comoving volume element is smallest in an universe.)
M

\ 1
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