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ABSTRACT

Thin films of electron beam evaporated silicon were deposited on molyb-

denum, tantalum, tungsten and molybdenum disilicide under ultrahiqh vacuum

conditions. Mass spectra from a quadrapole residual gas analyzer were used

to determine the partial pressure of 13 residual gases during each process-

ing step. Surface contamination and interdiffusion were monitored by in-

situ Auger electron spectrometry. 'fhe substrates were characterized by

x-ray analysis and SEM in the topographical and electron diffraction mode.

It was found that on polycrystalline tungsten with a {100} orientation,
0

silicon was grown with a grain size measuring 3000 A in cross section and

with {110} orientation below 630%. At 670 0 C, silicon grains had grown to

one micron in cross section and these grains had fllll and M OI orientations.

On Polycrystalline molybdenum substrates with 0001 orientation, silicon
0

grains measuring 2000 A across grew with a {110} orientation as high as

670 0 C. The presence of phosphorous in the silicon was responsible for at-

taining these elevated temperatures with silicide formations.

Heteroepitaxial silicon was grown on polycrystalline MoSi 2 at 8000C.

The silicon grew on (111) MoSi 2 grains. This growth was sensitive to the

presence of oxygen during deposition, the rate and length of deposition as

well as the substrate orientation. Above 950 0 C silicon growth was no longer

heteroepitar.ial but crystals 80 pin in cross section were obtained. The

presence of oxygen at a partial pressure of 1 x 10 -10 Torr was found to

reduce the size of silicon grains at 1100°C.
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INTRODUCTION

The purpose of this work is to design and define a laboratory experi-

ment that demonstrates the feasibility of preparing efficient Schottky

barrier solar cells (SBSC) by space processing. The investi gation is

directed toward utilizing the non-contaminating space environment in the

preparation of thin film silicon solar cells by epitaxial growth on various

metal substrates. The resulting deposits are then characterized to deter-

mine which parameters are essential to enhance solar cell efficiency.

Polycrystalline solar cells have the potential to reduce the cost of

photovoltaic generated electricity, but they presently suffer from low out-

put efficiency and a lack of a viable method of mass production. In the

SBSC, a metal-semiconductor contact provides the built-in voltage required

to separate the photogenerat9d electron-hole pairs. Several researchers 2,3

have reported high efficiencies (., 10"') for the SBSC on sinqle-crystal

silicon. More recently Chu4 has reported 9^ efficiency of p-n junction

type polycrystalline silicon solar cells. The SBSC device, however,

utilizes the metal semiconductor contact and avoids the diffusion or implan-

tation doping necessary to form the bipolar p-n junction device.

The most'economic fabrication scheme for SBSC will probably involve

the deposition of silicon, in polycrystalline form, onto a suitably prepared

metal substrate. The physical properties of the metal-semiconductor system

that enhance the device efficiency are (1) the silicon-metal contact must

produce a high Schottky barrier near 1.0 eV and (2) the substrate must per-

mit the growth of large grains of polycrystalline silicon measuring tiIOQ pm

in cross section and ti 10 pm thick.
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The ambient gases present during thp deposition of silicon onto metal

substrates can greatly influence the nature of the deposit obtained. These

gases can serve as contaminants which drastically alter the electrical prop-

erties of the metal-silicon interface throuqh their influence on the surface

states. Even submonolayer quantities can alter the Schottky barrier height

by several hundred millivolts and seriously reduce the efficiency of the

device. In addition, the presence of adsorbed contamination on the metal

surface can profoundly influence the critical nucleation stages of the

Growth of the silicon film resultinq in a reduction in grain size that can

lower the efficiency of the device. Further, these contaminants can become

incorporated into the growing silicon film and thereby influence its grain

structure or electrical properties.

Previous research in our Laboratory  indicates that the formation of

metal silicides has been a serious impediment to the growth of polycrystal-

line silicon films on cleaned metal substrates. At temperatures low enough

to retard silicide growth the silicon films are very fine grained ( f l Jim).

As a result, the electrical properties of the films are dominated by grain

boundary phenomenon,and the determination of the Schottky barrier height

has been impossible. If the temperature is increased to encourage grain

growth, the formation of metal silicide becomes so rapid that no free sili-

con remains on the surface.

During the period of this report silicon has been deposited on suk

strates of tungsten, molybdenum, tantalum and MoSi 2 . A simulated non-

contaminating space environment was used to systematically study the effect

of various gases on the efficiency of SBSC formed by the evaporation of

silicon on these substrates. The polycrystalline grain size of the silicon
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layer was determined as a function of oxygen partial pressure and conditions

for heteroepitaxial growth on metallic substrates was studied. Profound

influences were discovered on the silicon grain size due to oxygen partial

pressure, substrate temperature, and substrate orientation. Controlling

these variables has resulted in silicon films that are single crystalline

with a cross-section of several millimeters which is more than adequate for

solar cell fabrication.

L2
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BACKGROUND: EPITAXIAL SILICON THIN FILM GROWTH

This section is intended to review  the progress of the last 25 years

in thin film silicon growth on substrates such as silicon, ceramics and

metals. In the first subsection, the growth of silicon on silicon is re-

viewed since this system is the most extensively studied and the growth

mechanisms for it are applicable to other substrates. The second subsection

describes silicon growth on sapphire, ceramics, graphite and a review of

silicon growth on metals.

The twc principal methods in use today to obtain thin films of silicon

are (1) chemical vapor deposition and (2) vacuum evaporation. Commercially,

the chemical vapor deposition technique has been preferred since it does not

require ultrahiqh vacuum equipment and rapid growth rates of one micron/min

are routinely obtained. For the silicon growth studies, the vacuum evapor-

ation technique has been a more desirable method since it has , hided a

controlled environment in which the deposit could be monitored with surface

sensitive instruments. The availability of ultrahigh vacuum (UHV) systems

and surface analysis techniques such as low energy electron diffraction

(LEED) and Auger Electron Spectroscopy (AES) have provided in-situ analyses

during the various stages of growth which consequently have lead to advances

in the understanding of the growth process.

Before proceeding further, it is necessary to clarify the term

"epitaxy". In general,epitaxy means an oriented or single crystal qrowth

of one material upon another such that a crystallographic relationship be-

tween the grown layer and the substrate exists. When the oriented single

crystal is grown on an oriented substrate of the same material, this is
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referred to as homoepitaxy, such as silicon on silicon. If the oriented

single crystal is grown on a substrate of different material, -' is called

heteroepitaxy.

A. Growth of Silicon on Silicon.

The mechanism whereby homoepitaxial growth of silicon could proceed

has been described by Burton, Cabrera and Frank. 7 This growth was described

as proceeding by monoatomic steps if the surface was "atomically" or "ultra"

clean and smooth. During deposition, silicon atoms are adsorped on the

surface where they diffuse across the surface to a step or are reevaporated

in a finite time. In order for the epitaxial growth to proceed, it is neces-

sary to have a sufficient number of dislocations at the surface to provide

a source of steps. A slight misalignment from the preferred (111) can

relax the need for surface dislocations. The process of growth along sterns

is known as two dimensional growth since it describes a planar process. On

the other hand, the three dimensional growth process occurs when silicon

nucleates and grows in clusters that eventually coalesce into the continuous

film. This type silicon growth on the (111) silicon substrate has been de-

scribed by Unvala and Booker. 8 In a subsequent paper, 9 these authors re-

produced the three dimensional cluster growth at substrate temperatures of

1100°C. They found however,that by increasing the deposition rate at this

temperature,they produced films that were continuous, uniform and exhibiting

a lower number of stacking faults than the low rate material. Widmer 11

found no three dimensional growth when he grew thin films of silicon at tem-

O

peratures of only 700°C and deposition rates of 300 A/min in an ultrahigh

vacuum of 10-11 Torr.

To study the details of thin film growth and the surface conditions

that control this growth, three surface sensitive techniques have been

t
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generally employed with exceptional results. These techniques are (1) low

energy electron diffraction (LEED), (2) reflection high energy electron dif-

fraction (RHEED) which provide structural data about early stages of film

growth and (3) Auger electron spectroscopy (AES) which can detect the chem-

ical composition and residual contamination on the surface. The initial

LEED studies were made ry Joia 11,12 in which he obtained silicon (111) - 7 x 1

patterns by vacuum evapocation on clean silicon with a (111) orientation by

O

slowly depositing silicon at 0.6 A/min with the substrate held at 400°C.

Surface contaminants such as oxygen and carbon have been shown to play

a significant role in inhibiting two dimensional homoepitaxial growth. Oxy-

gen is present on the surface as adsorbed oxygen or as Si0 2 . Conversely,

the role of carbon in the promotion of three dimensional growth was exten-

sively studied by several investigators 
13-16 

who found that it was difficult

to remove the residual carbon layer unless the heat treatment of the silicon

was in excess of 1200"C. Although carbon could be removed by diffusion into

the bulk or by reaction with the gases in the vacuum chamber, ^-SiC precip-

itates were found at the surface after a 1200°C heat treatment. These pre-

cipitates gave rise to three dimensional growth. Henderson and Helm 15

further stated that any form of adsorbed carbon on the surface would prob-

ably produce the same growth effect as ^-SiC precipitates.

To study the effects of adsorbed carbon in the growth of silicon,Joyce

et al. 17,18 recontaminated an atomically clean silicon surface with ethylene

and measured the changes in the three dimensional growth as a function of

ethylene exposure. The lateral growth of the silicon grains was impeded by

increased nucleation sites arising from the higher carbon surface contamina-

tion.	 I
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The second major contamination that affects the epitaxial growth of

silicon is oxygen present either as Si0 2 or adsorbed on the surface. The

deleterious effects of oxygen are especially evident during the deposition

in which the substrate temperature and silicon arrival rate are low. The

investigations 19,20 into this effect concluded that at low deposition rates

and temperatures below 900°C, silicon reacted with SiO 2 slowly to form vol-

atile SiO, and the deposition could not proceed until all the SiO 2 was re-

moved. The interval before deposition was referred to as the induction

period, and the duration of this period was proportional to the deposition

rate and exponentially dependent on temperature.

B. Growth of Silicon on Sapphire, Graphite and Metals.

Significant interest in ceramic substrates especially a-Al 2 03 , sapphire,

has been generated from the use of thin film silicon in the fabrication of

MOS transistors, diodes, bipolar transistors and integrated circuits. On

ceramic substrates, the thin silicon films are grown by chemical vapor depo-

sition; however, the vacuum evaporation technique was preferred in growth

studies. Milek 21 and Filby and Nelson 
22 

have compiled an extensive review

of the literature of silicon on ceramics with special emphasis given to

silicon on sapphire.

Using LEER and AES, Chang 23 has made a careful study of the conditions

that produced epitaxial silicon by vacuum evaporation on (T012), (1123),

(0001) and (1120) sapphire surfaces. To achieve heteroepitaxial growth,

the substrate temperature was maintained below 925% to prevent the silicon

reaction with Al 203 . The products of this reaction are volatile SiO, oxides

of aluminum and residual aluminum that could lead to the autodoping of

silicon. The highest quality films were grown in the (100) orientation on
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the (1012) sapphire plane between 650% and 925°C.

Silicon has also been grown on spinels, SiO2 , BeO, SiC and glazed

ceramics but the results have been only partially successful in obtaining

high quality heteroepitaxial silicon films.

Graphite substrates have been used by Chu 
24 

for silicon growth by chem-

ical vapor deposition in photovoltaic applications. The silicon deposit

was polycrystalline with the microstructure dependent on deposition rate

and substrate temperature. Silicon crystallites as large as 30-40 um were

grown but these films have proved unsuitable for high efficiency solar cells

due to excess recombination at the grain boundaries.

In general epitaxial growth of silicon on metals has been avoided due

to the problems of lattice mismatch, thermal expansion differences and

metal-silicon alloying. Initial studies by Jona
25,26,27 

of silicon on alumi-

num, nickel and beryllium were intended as a '..EED study of silicon on these

metals and were not an attempt to attain epitaxial growth. Polycrystalline

silicon has been grown on large grain polycrystalline tungsten by Bevolo

et al. 5 under UHV conditions. They found that the polycrystalline silicon

could be grown at substrate temperatures below 625°C but the crystallite
O

size was only 3000 A in cross section. Above 625°C, tungsten silicides

were formed. In a similar experiment Racette and Frost 
28 

found that it was

possible to grow {110} silicon on 35-60 um {100} tungsten grains. Initially

they claimed that the polycrystalline silicon was comparable to the sub-

strate grain size but subsequent transmission electron microscopy indicated

submicron crystallites which was in essential agreement with Bevolo et al.5

E
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EXPERIMENTAL APPARATUS AND PROCEDURE

In the following subsections, the materials, apparatus and experimental

procedure used to deposit silicon under low pressure conditions onto various

metallic substrates are described.

A. Materials.

(a) Silicon Source. Two silicon ingots were used in these deposition

experiments. The first ingot was obtained from the Dow Corning Corp. and was

high purity p-type silicon with a resistivity of 13 to 15 ohm-cm. It was

used in the experiments 1-01 through 1 -31 and was designated Silicon I. An

n-type silicon ingot was used for Experiment 1-41 and in all subsequent

experiments. This ingot was phosphorus doped with 0.008 ohm-cm resistivity

and was designated Silicon II. It was obtained from the Wacker Chemical

Co., Munich, Germany.

(b) Molybdenum. The molybdenum substrates used in this investigation

were prepared from 0.013 cm thick sheet obtained from the Molybdenum Corpor-

ation of America. It contained 8 ppma (parts per million atomic) nickel,

10 ppma potassium, 20 ppma aluminum, 31 ppma tungsten, 40 ppma iron, 50 ppma

zirconium, 50 ppma silicon, 50 ppma carbon, 100 ppma nitrogen and 120 ppma

oxygen. The molybdenum substrates measured 1.4 x 2.2 x 0.013 cm and were

electropolished prior to a vacuum anneal at 1100°C. The recrystallized

molybdenum grains measured between 10 and 60 um in cross section and were

predominantly oriented along the {100} plane.

(c) Tungsten. Tungsten substrates were prepared from 0.013 cm thick

sheet that was obtained from the Rembar Company. The material contained 15
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ppma carbon, 185 ppmd oxy gen, and 15 ppma nitroqen. The major metallic im-

purities included 10 ppma aluminum, 10 ppma chromium, 100 ppma iron, 170

ppma molybdenum, 70 ppma niobium, 60 ppma nickel, and 60 ppma titanium.

The substrates measured 1.4 x 2.2 x 0.13 cm and were electropolished. As

received, the tungsten was fine qrained ( 5 i ►m). However, with vacuum an-

nealinq, the recrystallized tungsten grains measured 5 to 60 um in cross

, ,v( t ion rind were dl , . o oriented along the 11001 plane.

(d) Tantalum.	 The tantalum ',ub(Jrat ► a s were sheared from 0.013 cm

sheet that was obtained from the Kawecki Berylco Company. The major

metallic impurities in the material were determined to be 5 ppma

chlorine, 7 ppma chromium, 70 ppma iron, 10 ppma potassium, 9 ppma sodium,

31 ppma nickel and 110 ppma silicon. The carbon, oxygen and nitrogen con-

tent was 660 ppma, 1075 ppma, 130 ppma respectively. The substrates were

electropolished in a sulfuric-methanol bath. The recrystallization of the

substrates was performed in-situ at 1700°C for 360 min and the resulting

grains were found to be oriented in the (2111 and {111} planes.

(e) Molybdenum Disilicide (MoSi 2 1 	Small ingots of molybdenum disili-

cide were produced in our Laboratory by arc melting stoichiometric amounts

of molybdenum and hiqh purity silicon. Substrates were cut from these

in(lol. , ,	 inter	 waf'er ,, I.I	 to	 1.5 cm	 in diameter drill	 0.05	 to	 0.10 cm thick.

The'.v wafer-, were mec hdfi ie , ► I I y	 po l i "hed flat	 on erne	 face	 through t inde A

Mid	 It.	 the	 Mo',i., ► tr,rin"	 vorr • i ► 'd	 betwren 11.111	 to	 0.1,	 cm	 in	 ( roti-, -,ec 1.1on

and showed no preferred orientation.



B. Apparatus.

The experimental system used for the deposition of silicon consists of

the space simulation chamber (SSC), the analytic instruments, the silicon

deposition assembly, the substrate holder assembly and the metallization

unit.

(a) §Race Simulation Chamber. The stainless chamber, equipped with

cryosorption,titanium sublimation and differential ion pumps and a large

liquid nitrogen cryopanel, routinely attains a pressure of 5 x 10 -11 to 5 x

10-12 Torr (N2 ) after a 380°C bakeout for 7 days. The residual gas pres-

sures were measured with an ionization gauge and a UTI Model 1000 residual

gas analyzer. The details of the vacuum system and the residual gas pres-

sure calculation were described in an earlier work. 5 An Auger electron

spectrometer (AES) was also mounted in the vacuum chamber to provide in-situ

analysis of the specimen surface.

(b) Carrousel Assembly. The carrousel, shown in Fi g ure 1, was attached

to a specimen manipulator that was obtained from Physical Electronics Inc.

The carrousel contains three substrates, thermocouples, and attached power

cables. The substrates had a thermocouple spot welded to their back side,

An oven assembly, shown in Figure 2, was built to allow for the indirect

heating of substrates that were non-metallic, brittle or irregularly shaped.

The substrate was sandwiched between two tantalum sheets, whose edges were

crimped into slotted tantalum flats that were ordinarily used to fasten the

substrates to the carrousel. The top sheet contained a 0.95 cm diameter

hole and was wider so that a uniform cross sectional area was maintained.

Silicon could then be deposited through the hole onto the substrate. A

thermocouple was placed between the substrate and the bottom tantalum sheet

i



c
0

v
N }-1
O ma i
a +-JN
v ^L N

C rp

a
^ EvN C
^ O
N C
Q! O
U

0) N
N
N 4--

m O

i N
d.l ^

O ^-
t

C
v •^
4-j -C
(0 +-)

S-

4-)  4-
N O

^ C
N O

C rL3
r6 N

N QJ
N +-J

U
':^ r0
i S.
i r0
co t
U U

QJ
i

Q'

LLJ

-12-



-13-

N

N3

N
Nb

'	 ^ O

4Jtocu

cu

o
cn L.0

s^u CLN
VEMM"

♦-^ ^, ^^ N



-14-

to monitor temperature changes of the substrate. For most applications, a

Pt/Pt-13% Rh thermocouple was used.

'The oven was tested successfully using a single crystal silicon wafer

as a substrate. In this experiment, 1-41-2, silicon was deposited on the

wafer for 300 minutes at 150 A/min with the wafer temperature maintained at

800°C. Electron channeling of the substrate and the silicon film layer in-

dicated perfect registry of the expitaxial film on the substrate.

In several experiments, specifically those with the tungsten substrates,

where it was necessary to recrystallize the substrate in-situ at tempera-

tures greater than 1700°C, a combination of optical and infrared pyrometry

and thermocouples were required to cover the full temperature range under

the given conditions. A Raytek Thermoalert infrared pyrometer, Model 300,

was calibrated against the Pt/Pt-1V O thermocouples between 400 and 800%

prior to the anneal of each substrate. At the annealing temperature the

thermocouples became inoperative and the optical pyrometer was substituted.

For the deposition, the infrared pyrometer calibrated for the specific sub-

strate was then employed to set and monitor the desired temperature.

((.) ;i I icon 1)epo ,>i it ion %yoem	 i I it on was evaporated from the top of

the i n(lo 1, that, wa y. hra tee by in vl rc tro', to 1, i (:a I ly focused, 6-KW !' i erce type

electron beam gun that was obtained from the Veeco Co. In this manner cru-

cible contamination to the silicon was minimized. A water cooled hearth

installed after experiment 1-11, supported the silicon and served several

functions; (1) the deposition rate could be dramatically increased, (2) con-

tamination of the silicon from the hearth was eliminated and (3) an overflow

of molten silicon from the top of the ingot did not lead to catastrophic
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alloying with the vacuum chamber walls.. The design of the mold assembly is

shown schematicdlly in Figure 3. The silicon ingot which measured 3.2 cm

in diameter and 5 to 7 cm high, rested on the tantalum hearth. This hearth

was supported by a cylindrical stainless steel pedestal. The cylindrical

pedestal was welded to a water feedthrough and mounted on a high vacuum

flange. The entire pedestal unit could be inserted through a 3.7 cm tube

in the bottom of the chamber.

The silicon deposition rates using the water-cooled mold assembly were

determined by evaporatinq silicon on Three electropolished molybdenum sub-

strates with the SSC pressure maintained at 10 -7 Torr. A tantalum band was

attached across the center of each substrate to provide a well defined edge

in the silicon film for the Dektak profile measurements. Silicon deposi-

tions were made on the three substrates for 30 minutes using 1000, 1250 and

1500 watts of electron beam power. As can be seen in Table I, deposition

rates up to 7500 A/min were obtained with the new mold assembly.

Table I. Deposition rates of silicon using water-cooled mold assembly.

Electron Beam

	

Power	 Thickness	 Time	 Rate
0

	

(watts)	 (um)	 (min)	 (A/min)

1000 2.0 32 630

1250 7.9 30 2600

1500 22 30 7500
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Substrate

Electron beam

Silicon ingot 	 Shield

Tantalum hearth

Stainless steel

Water f low

F- i(jury 3. A schematic of the silicon mold assembly used for silicon
vapor dvpo, i L ion.

i	 j
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(d) Metal Evaporator Unit. An evaporator unit was installed in the

SSC to provide in-situ metal films on the clean electron beam deposited

silicon. Electrical contacts were prepared by evaporating gold from a

tungsten boat at an oblique angle through an appropriate mask onto the

silicon deposit. The components of this .uni't are shown in Figure 4. The

dual electrical feedt;:rough was mounted on the stainless steel frame and

provided a convenient method for electrically isolating the source boat.

The tungsten boat was connected to the copper electrodes of the feedthrough

by means of tantalum tabs. The tungsten boat was crimped into slotted tan-

talum flats which were attached to the tantalum electrodes. The source

boat measured 5 cm long by 1.3 cm wide by 0.013 cm thick. Braided copper

cables provided the power leads between the electrical feedthroughs mounted

on the chamber wall and the evaporator unit. A protective vapor shield

surrounded the entire unit confining the deposit to the mask region. A mir-

ror was set above the vapor shield so that the metal evaporation process

could be observed.

C. Experimental Procedure.

(a) General Deposition Procedure. The substrdte,onto which silicon

was to be deposited, was attached to the carrousel,and the entire assembly

loaded in the SSC. The chamber was then evacuated, baked out at 380 0! for

7 days and cooled to room temperature. After bakeout, the pressure in the

chamber was 1 x 10-10 Torr or lower and was decreased to < 5 x 10-11 Torr

after the cryogenic panel was filled with liquid nitrogen.

The substrates were then AES analyzed, resistively heated above 1000°C

and reanalyzed, to determine the level and type of surface contamination
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OPTICAL SIGHT PATH .

Figure 4. A schematic of the metal evaporation unit for depositing contact
electrodes on silicon. Shown is A, the contact electrode pattern
mask; B, the substrate; C, the metal source and tunqsten boat;
D, the tantalum electrode; E, the stainless steel frame; F, the
copper electrodes; G, the dual-feedthrough; H, the vapor shield;
I, the mirror.
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prior to silicon deposition. During deposition the partial pressure of hy-

drogen rose to 5 x 10-8 to 5 x 10-10 Torr which represented 96% of the

total residual qas. The deposition rate of silicon was controlled by the

power to the electron beam qun while the substrate temperature was main-

tained by resistive heating.

After the completion of deposition, the surface was again analyzed by

AES. If the experiment required metal electrodes to be placed on the sili-

con deposit (for electrical characterization studies),they were vapor

deposited using the Metal Evaporation Unit.

(b) Specimen Analysis. The analytical techniques and instruments, de-

scribed below, were employed to fully characterize the substrate and the

thin silicon deposit with respect to crystallographic orientation and struc-

ture, grain size and surface morphology, thin film composition and elec-

tronic properties. To characterize the specimens, x-ray and electron

diffraction analysis, AES surface and depth profiling analysis, scanning

electron microscopy (SEM) and optical microscopy of the surface and cross

sectional topography were employed.

1. Optical and Electron Microscopy. The morphology, grain size,

film thickness and structure of the specimens were determined from photo-

micrographs of the top and edge views obtained using the optical microscope

and the SEM.

A cross sectional profile of the specimen was required to provide in-

formation on the grain growth at the surface and the silicon thickness. The

sample was mounted in Buehlers Transoptic powder, which is a transparent

thermoplastic material. The sample was then mechanically polished to reveal

the deposit and interface regions. Subsequent chemical etching exposed the
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0
grain structure. Silicon grains as small as 2000 to 3000 A thick were

observed using these procedures.

2. X-ray and Elec tron Diffraction Ana lysis. The Debye-Scherrer

camera and the x-ray diffractometer were two techni q ues employed in this

investigation to determine the presence of thin layers of silicide and the

orientation of substrates and silicon deposits; e.g. sharp x-ray patterns
0

implied grain sizes greater than 100 A.

The SEM,opPrating in the electron channeling mode, was used to detect

crystalline grains greater than one micron in size.

3. Surface Analysis. The AES was the primary in-situ instrument

used in this study. In the SSC, the in-situ AES measured the type and level

of surface contamination and detected the presence of substrate material

which had diffused through the silicon deposit. In a separate facility, AES

depth profiles of the samples were made.

4. Electrical Measurements. A current-voltage measurement was made

to determine the metal semiconductor (Schottky) barrier height. A bias

voltage (V) was placed across the device and the resulting current (I) was

measured. A plot of the current density versus voltage was used to calculate

the barrier height.
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RESULTS AND DISCUSSION

The earlier work in the Ames Laboratory involving silicon deposition

on clean metal substrates indicated that the rapid reaction of silicon with

the substrate at high temperatures severely restricted the temperature

range in which non-reacting deposits could be made. At the same time, a

high temperature deposition was desirable to maximize the silicon grain

size. During this study silicon was deposited on substrates of tungsten,

molybdenum, tantalum and molybdenum disilicide (MoSi 2 ). A total of nine

tungsten and five molybdenum substrates were employed to study the grain

growth of silicon from 550°C to above the initial silicide formation temper-

ature. In addition, three tantalum substrates were studied to determine

the formation temperature of the silicide and investigate the possibility

of silicon growth on the hexagonal TaSi 2 rather than the tetragonal MoSi2

and WSi 2 . Finally, a total of eleven large grain MoSi 2 wafers were used as

substrates to investigate the effects of temperature, oxygen pressure and

orientation on the heteroepitaxial growth of silicon.

A. Tungsten Substrates.

Silicon was deposited on a total of nine tungsten substrates to

determine the feasibility of growing large grain polycrystalline silicon

on ultraclean substrates at low temperature. These substrates were electro-

polished to obtain a uniform p%ilished surface. The first substrate 1-01-1

was recrystallized by means of a defocused electron beam in a separate

facility to obtain grains that measured between 5 and 20 um in cross sec-

tion. All subsequent substrate recrystallization was performed in-situ with
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substrate 1-41-1 annealed at 1900°C for 60 min while substrates 1-81-1,

1-81-2, 1-81-3 and 1-91-1 were annealed at 2050 to 2100°C for 1440 min (24

hr) prior to depo , , i t ion. The &L,tik of Lhe anneal procedure are sunmar iced

in Table II.	 In experiment 1-101, a 1700°C recrystallization anneal for

360 min was employed. In that experiment, three metals, tungsten, molyb-

denum and tantalum were welded to a tantalum v:bbon which constituted one

substrate assembly. For each deposition three samples were prepared, and

in the following discussion 1-101-1W refers to the tungsten substrate,

1-101-1Mo to the molybdenum substrate and 1-101-lTa to the tantalum sub-

strate all of which were prepared during the deposition on substrate assem-

bly 1-101-1.

For the first two tungsten substrates, 1-01-1 and 1-41-1, the in-situ

Auger analysis of the tungsten surface gave nearly identical results of

--V! carbon coverage and 25% oxygen coverage after the anneal. In all subse-

quent experiments, the AES filaments remained off until the depositions were

completed to reduce the possibility of recontamination. The silicon source

for the first deposition was 15 ohm-cm, p-type, but this was changed to a

0.008 ohm-cm phosphorus doped n-type silicon ingot in experiment 1-41.

Silicon was deposited on the crystallized tungsten substrates in the

temperature range of 550°C and 850°C to promote maximum grain growth with

the hi(lhr , ,t.	 tomp,erature available without -.il icide formation.

These ,ampl(r, were divided into two classes. The first classification in-

cluded 1-01-1, 1-41-1, 1-81-1, 1-81-2, 1-81-3 and 1-91-1 and are considered

a low temperature deposition since no silicide formed. The second classi-

fication included 1-101-1W, 1-101-2W and 1-101-3W and silicide formation

was present.
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(a) Silicon Deposition Below 650°C. In this first group in which sili-

con was deposited on tungsten between 550°C and 630°C, there were little

apparent differences in the surface morphology and orientation of the de-

posits. The top and edge view of sample 1-01-1, deposited at 550°C, is shown

in Figure 5(a) and (b), and is representative of the silicon grain structure

O

where the grain size did not exceed 3000 A in cross section. The orientation

of this deposit was determined as {110} by x-ray analysis. For experiment 1-41,

the silicon source was changed to the high phosphorus doped ingot, and substrates

were recrystallized in-situ, but no change in morphology or orientation was noted.

for 1-41-1. By inc:reasinq the deposition temperature to 560" for 1-81-2,

590% for 1-81-3 and 630% for 1-91-1, it was hoped the silicon grain size

could be increased. However, the photomicrographs in Figure 6(a), (b) and

(c) show no significant improvement in the grain size for 1-81-2, 1-81-3

and 1-A-1 respectivi^ly.	 the orientation of the silicon deposits was 11101

but minor planes of fllll and f3111 were also detected by x-ray analysis.

The details of this x-ray analysis are summarized in Table III. In view of

the surface morphology described in the photomicrograph in Figure 5(a), 6(a),

(b) and (c), it was not surprising that psuedo-Kikuchi patterns were not

obtained when these deposits were examined by electron channeling techniques.

Figure 5(a) shows a fine grain silicon layer on tungsten substrate grains.

From optical microscopy and from electron channeling patterns, we conclude

that the deposited layer only replicates the tungsten substrate.

(b) Silicon Deposition Above 650°C. For the second series of tungsten

substrates, the deposition temperatures, TD , were 850°C for 1-101-1W, 750°C

for 1-101-2W, and 670°C for 1-101-3W. The effects of increased temperature

are vei" apparent as one examines Figures 6(d), (e) and (f) for samples
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1-01-1	
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-W ^j	 J

Figure 5. SEM and optical photomicrographs of 1-01-1 showinq a surface and
edge view of the fine grain {110} silicon deposited on {lOul

tungsten. (a) SEM photomicrograph taken at 880OX showing the

replication of silicon on the substrate. 	 (b) An optical photo-

micrograph taken at 140OX showing the fine grain silicon after

etching.
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1-101-3W, 1-101-2W and 1-101-1W respectively.

Sample 1-101-3W, shown in Figure 6(d), was prepared at T O = 670% and

the resulting deposit possessed two distinct morphologies. The first was

similar to those described for substrates prepared at T O c 630°C,that is,

fine grain crystallites measuring ti 3000 A across. The second type structure,

which was generally greater than 30 um in lateral exter.t,was smooth, flat

and produced poor quality psuedo-Kikuchi patterns when examined with elec-

tron channeling. In addition to the {100} tungsten substrate, the x-ray

detected the presence of planes of {111} and {110} silicon. No metal was

detected on the surface with the in-s itu AES, but approximately 1% phospho-

rus and 1°', sulfur coverage was determined to be on the surface.

The next sample, 1-101-2W, was prepared by depositinq silicon on a sub-

strate held at 750°C. Although no tungsten was detected at the surface of

this sample,	 2% phosphorus coverage and a total of	 1% coverage for

sulfur, oxygen and carbon was found by in-situ Auger analysis. The grains

produced by this deposition, shown in Fiqure 6(e), were clusters that mea-

sured 2.5 to 10 um in cross section. The x-ray results indicated that both

silicon and tungsten silicide were present. Thus, a finite thickness of

silicon remained unreacted on the tungsten silicide base layer. The size

of these grains was well within the capability of the channeling technique

but no patterns could be obtained.

For the final sample in the series, 1-101-1W, silicon was deposited at

a temperature of 850°C and reacted to form WSi 2 . Figure 6(f) shows the

granular morphology of the deposited film that in-situ analysis confirmed

as WSi 2 . These structures measured ti 2 pm across.

To summarize these results, we have deposited silicon on recrystallized
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tungsten with (1001 orientation. Polycrystalline silicon grains measuring

3000 A in cross section grew in 0101 orientation between 550°C and 630"C

without the formation of a silicide. We have attributed the suppression of

the silicide at the higher deposition temperature to the presence of phos-

phorus. At 670 0 C, silicon grew on tungsten in both the {111} and f110}

planes. The surface had flat regions on the silicon deposit that measured

30 um in cross section. These were examined by electron diffraction tech-

niques and weak electron channeling patterns were obtained. This channeling

result implies these areas are composed of smaller grains measuring only a

few microns in cross section. An intermediate condition was obtained at

750°C in which the silicon arrival rate was slightly greater than the sili-

cide formation rate. The resulting deposit consisted of silicide grains

that were overlayed with a fiiie-grained silicon. At 850"C, all of the

silicon reacted with the substrate to form WSi2.

B. Molybdenum Substrates.

A total of five molybdenum substrates, 1-01-2, 1-01-3, 1-01-1Mo,

1-101-2Mo, 1-101-3Mo, were prepared within the temperature range of 550%

to 850°C. The first two substrates, 1-01-2 and 1-01-3, were recrystallized

in vacuum for 410 min at 1100% prior to loading in the SSC. These sub-

strates possessed grains 10-60 um in cross section with the orientation of

the grains in the {100} plane but with some {211} planes also present. In

the SSC the substrates were annealed to 1000°C for 60 min to completely re-

move the surface contamination. Auger analysis after the anneal revealed

that the surface still contained 1% carbon and 10% oxyqen. The three re-

maininq substrates were annealed in-situ at 1700% for 360 min to produce
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molybdenum grains between 5 and 60 um in cross section and having a {100}

orientation. The Auger analysis was not performed to reduce the risk of

contamination by the degassing of AES filaments.

(a) Silicon Deposition Below 670"C. Substrate 1-01-2 was maintained

at 550% while silicon was deposited at a rate of 300 A/min for 100 min.

To enhance silicon grain growth, TD was raised to 650°C for the deposition

on substrate 1-01-3. After ..00ling the samples, the in-situ Auger analysis

of the two samples indicated that a reaction of molybdenum and silicon oc-

curred only in 1-01-3. The surface ..,)rphology for sample 1-01-2, shown in

Figure 7(a), was similar L tungsten substrate 1-01-1. The x-ray diffrac-

tion analysis indicated the si 	 n 1-01-2 was crystalline with an orien-

tation of 11101. Since electron channeling wa•s not obtained, the silicon

Q

film was considered polycrystalline with crystallites ti 2000 A across. An

Auger depth profile of 1-01-2 revealed that the interface between silicon

and molybdenum was sharply def-ined,indicating little or no diffusion.

A series of three depositions near and above the silicide formation

temperature were made to test the effect of phosphorus in silicon on re-

tarding silicide growth. Substrate 1-101-3Mo was a repetition of 1-01-3.

Silicon was deposited at 670°C for 360 min, on 1-101-3Mo; however the result-

ing film, shown in Figure 7(b), was closer to 1-01-2 in structure than
O

1-01-3. The silicon grains were	 2000 A in cross section,and the layer

only replicated the substrate grains. The surface was exclusively silicon

with only	 1% phosphorus and ti 1% sulfur coverage as determined by in-situ

AES analysis. The x-ray analysis determined that the silicon orientation

was predominantly {1101 with the {111} and {311} planes also present.

I
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(b) Silicon Deposited Above 670°C. By increasing the deposition tem-

perature to 750°C for sample 1-101-2Mo, a distinctly different surface

morphology shown in Figure 7(c) was produced. These "finger" like structures

were	 10 um long and ti 1 um in diameter. Although silicon and not molyb-

denum was detected on the surface of this deposit with the in-situ AES,

x-ray analysis confirmed the presence of molybdenum silicides beneath the

surface layer of silicon. In addition to the silicon there was ti 2% phos-

phorus coverage of this surface. The final molybdenum substrate in this

group was prepared by depositing silicon at 850% for 360 min. The result-

ing film was MoSi P and it is pictured in Figure 7(d) which shows its charac-

teristic "hillock" structure. The in-situ Auger analysis revealed that 98%

or the surface coverage was MoSi 2 with the balance composed of oxygen,

carbon and sulfur. Table IV contains a summary of deposition and character-

ization data for the five molybdenum substrates.

To summarize, silicon deposited on recrystallized {100) molybdenum

grows with {110) planes. With the phosphorus doped silicon source, the

deposition temperature was increased from 550°C to 670°C without silicide

formation. At 750°C, silicides were formed but the growth of these sili-

cides proceeded at a rate lower than the deposition rate of silicon. As a

result, a layer of fine grain silicon covered the silicide grains. When
l

silicon was deposited at 850°C, MoSi 2 was quickly formed.

C. Tantalum Substrates.

A surprising discovery was made when some of the silicon deposit was

analyzed on the tantalum en;?lope surrounding the silicon substrate used in

experiment 1-41-2,in which silicon was deposited on a single crystal wafer
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of silicon. Even though the temperature of the tantalum envelope was prob-

ably higher than the 800°C measured at the silicon substrate, no tantalum

Auger signal could be detected on the surface of the silicon deposit.

Instead only silicon and phosphorus were found. Subsequent analysis by

SEM, electron microprobe, AES depth profiles and x-ray analysis revealed

that the silicon, nearly five microns thick, covered over 90% of the sur-

face. Beneath these silicon crystals there was a uniform two micron

thick layer of TaSi 2 . A top view of this sample is shown in Figure 8(a)

and an edge view is shown in Figure 8(b). Portions of the silicon layer

were easily removed and an Auger depth profile through the TaSi 2/Ta inter-

face (1% depth resolution) put an upper limit of less than one monolayer of

TaP at the interface. This result ruled out the formation of a TaP diffu-

sion barrier at the TaSi 2/Ta interface. It may be that the phosphorus was

uniformly distributed throughout the TaSi 2 layer (at a level less than 200

ppma) or in the grain boundaries thereby limiting the diffusion of silicon

to the TaSi 2 , which is known to be the rate limiting step in the formation

of TaSi 2 . In any case, it appears that the presence of phosphorus in the

silicon source may significantly suppress the growth rate of TaSi 2 at 800°C,

by a mechanism not presently understood.

It should be recalled that little effect due to phosphorus dopinq of

the silicon source was evident in the silicon grain structure of the tung-

sten substrate (1-41-1) deposited at 550"C. Analysis of the tantalum enve-

lopes used in experiment 1-•61, where their temperatures were above 1100°C,

revealed no phosphorus and complete conversion of the silicon deposit to

TaSi 2 . Evidently at these higher temperatures the effectiveness of a phos-

phorus doped silicon source is lost, probably because of the much higher

y
t:
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Silicon

TaSi2

Tantalum
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1-11-2

Firure 8. SEM photomicrogra p h of the surfo(-o and an optical photomicrograph
of the cross sectional profile of silicon deposited on tantalum

in experiment 1-41-2 (a) SEM micrograph taken at 120OX showing
crystalline.
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rate of evaporation of phosphorus from the hotter tantalum envelopes.

These results combined with the successful silicon growth at 800°C reported

above suggest that there may be an optimum temperature at which the benefi-

cial effects of the co-evaporating phosphorus has a maximum effect. To

investigate this phenomena, the following series of silicon depositions on

tantalum was undertaken with substrate temperatures at 670, 750 and 850°C.

The three tantalum substrates used in this experiment, 1-101-1Ta,

1-101-21'a and 1-101-31'a were annealed in-situ for 360 min at 1700°C to pro-

duce grains of tantalum that exceeded 50 um in cross section. These qrains

recrystallized in a preferred orientation of f2111 and {111}. Silicon was

deposited on substrate 1-101-31"a for 360 min at 670°C. The photomicrograph

of the resulting deposition, Figure 9(a), shows a surface with fine grain

structure,but this layer had begun to segregate into islands % 15 um in

cross section. The composition of this deposit was 98% silicon with 	 1%

phosphorus and % 1'% sulfur coverage as determined by in-situ Auger analysis.

Silicon was deposited on 1 101-2Ta for 360 min at 750°C. While viewing the

surface of 1-101-2Ta in Figure 9(b), it was apparent that the segregation

noted in Figure 9(a) had progressed. The island-like structures shown in

Figure 9(b) are 20 um across and have exposed the substrate. Thus, the

in-situ Auger analysis of this layer produced ti 1% tantalum cove rage in ad-

dition to ti 2% phosphorus coverage and ti 1% coverage for carbon, oxygen and

sulfur. This deposit has proved to be very unstable,and extreme caution was

required while handling it to prevent the deposit from flaking off. At the

deposition temperature of 850°C, silicon was evaporated for 360 min on sub-

strate 1-101-1Ta. The in-situ AES detected the formation of TaSi 2 as well

as	 ti 2% coverage of the surface with sulfur, oxygen and carbon. The
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morphology of TaSi 2 is described as "rosette" like and is shown in Figure

9(c). None of the above deposits showed signs of crystallinity by channel-

ing techniques. Table V summarizes the results and experimental conditions

for silicon deposited on tantalum substrates.

To summarize the above result, silicon deposited at 670°C, produced a

fine grain deposit that was beginning to segregate into regions measuring

15 pm across. The silicon growth at this temperature is attributed to the

phosphorus in the silicon source. The second deposition, 1-101-21'a, was

made at 750%, and the deposited silicon formed island-like structures that

resembled the structure on the tantalum envelope in experiment 1-41-2 in

which silicon was deposited on a silicon substrate. The major difference

between these experiments was that 1-41-2 produced crystalline grains and

1-101-2Ta did not. Also, the deposit on substrate 1-101-2Ta was not mechan-

ically stable and flaked off the substrate. This instability suggests that

the silicon merely coated the substrate and did not diffuse into the metal.

If this is true, the phosphorus could have inhibited interdiffusion. At

850%, TaSi 2 was formed " s rapidly as the silicon was deposited on

tantalum.

D.	 Silicides.

Two approaches to the silicide formation problem were suggested by the

previous results and by the kinetics of the silicide reaction. The growth

o f a silicide layer is diffusion-limited,but it is not clear whether the

rate limiting step is bulk or grain boundary diffusion. If it is bulk dif-

fusion, then a thicker silicide layer should reduce the reaction rate. If it

is grain boundary diffusion, then large grain silicide should be used. Two
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types of experiments were performed. The first was the growth of a thick

MoSi 2 layer on a clean molybdenum substrate to determine whether this thick

silicide layer would reduce silicide growth during silicon deposition at

temperatures above 650°C. The second type of experiment utilized the poly-

crystalline MoSi 2 substrate that eliminated the silicide reaction because

the free metal was removed. In the second type of experiment, large silicon

grains were grown on polycrystalline MoSi 2 as a function of temperature and

the oxygen partial pressure.

(a) Silicon Deposition on MoSi 2 Grown on Molybdenum. Five molybdenum

substrates, 1-11-1, 1-11-2, 1-11-3, 1-91-2 and 1-91-3, were used to study

rapid high temperature silicide formation. The first three substrates, 130

um thick, were electropolished and then annealed in a separate furnace for

930 min at 1100°C under a pressure of 5 x 10-6 Torr. The resulting molyb-

denum grains measured 10 to 60 um across. The substrates were attached to

heavy tantalum electrodes so that a large temperature gradient could ba ob-

tained across the length of the substrate. A thermocouple attached at the

center of the substrate was used to first determine a reference temperature

after which an optical pyrometer was used to determine the temperature gra-

dient. This arrangement followed an evaluation of the silicide grain mor-

phology as a function of deposition temperature.

Silicon was deposited on molybdenum substrate 1-11-1 for 600 minutes

with the substrate center maintained at 1215°C, while the ends of the sub-

strates were at -.1080°C. After cooling the substrate, in-situ Auger analysis

indicated MoSi 2 on the surface. Substrate 1-11-2 was held at a temperature

of 1000% at its center during silicon deposition. The temperatures near

the ends of the substrate were about 875°C. The in-situ huger analysis
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of this substrate also indicated the formation of MoSi 2 as observed for

1-111-1 above.

The silicide growth conditions for the third substrate, 1-11-3, were

the same as for 1-11-1. The in-situ Auger analysis of the surface after the

1200°C silicon deposit again indicated MoSi 2 . The temperature of the sub-

strate with MoSi 2 layer was then held at 700°C for 500 minutes to deposit a

5 um layer of silicon. After this deposition, the Auger analysis indicated

interdiffusion of the silicon and molybdenum at the center although near

the cooler ends only silicon was found. The x-ray analysis of the three

samples after removal from the vacuum system showed the presence of the two

silicide phases, Mo 5Si 3 and MoSi 2 . Electron channeling and optical photo-

micrographs were used to determine the size of the surface MoSi 2 grains.

The results of these measurements and the deposition data for these three

substrates are shown in Table VI.

The substrates were edge mounted to obtain a better view of the mor-

phology of the deposited films. Figure 10 shows photomicrographs of the

cross sections in polarized light and with normal illumination after etching

for the center of three samples. Sample 1-11-1 had two distinct layers on

the molybdenum surface. First there is a layer 10 to 15 um thick next to the

molybdenum which has been identified as Mo 5Si 3 . On top of this layer is an

equally thick layer of MoSi 2 . The relatively large columnar grains of the

MoSi 2 can be seen in Figure 10(a) and (d).

In Figure 10(b) and (c) of sample 1-11-2, which was prepared at 10000C,

the layer of Mo 5 Si 3 is much thinner; yet, a 10 um thick layer of MoSi 2 was

found. The interpretation of the photo of 1-11-3 is complicated since

the silicon deposited at 700°C reacted with the MoSi 2 layer forming a

fine grain region. Near the end of the substrate, where the temperature was
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lower, a layer of silicon was maintained on top of the large grain MoSi 2 as

shown in Figure 11.

In a continuation of this study, the large grain molybdenum substrates

were employed for experiment 1-91-2 and 1-91-3. By depositing silicon at

1400°C on molybdenum having a grain size of til cm2 , it was believed that the

MoSi 2 grain growth would be enhanced. The molybdenum substrates 1-91-2 and

1-91-3 with a thickness of 210 um and 180 um respectively were annealed for

180 min at 1400°C in-situ at a maximum pressure of 1x10
-8
 Torr. Silicon was

deposited on 1-91-2 at 1410 0 C for 300 min and on 1-91-3 at 1440% for 300 min.

After the deposition on 1-91-3, the substrate temperature was reduced to

800°C and the substrate was translated 0.5 cm for a second 300 min deposi-

tion. Thus, on sample 1-91-3, three deposition regions were obtained. In

comparing the 1400% deposition regions for 1-91-2 and 1-91-3, there was

little apparent difference in the surface morphology. The in-situ Auger

analysis indicated that Mo2Si was present at the surface of each 1400%

deposit. An SEM photomicrograph of the 1400°C deposit of 1-91-3 is given

in Figure 12(a). In Figure 12(b),silicon deposited at 800°C on top of the

deposit made at 1400°C is shown and the surface concentration was determined

to be MoSi by in-situ Auger analysis. Silicon evaporated at 800°C directly

on the large grained molybdenum substrate, shown in Figure 12(c), formed

MoSi 2 . Table VII is a summary of conditions and results of silicon deposited

on molybdenum substrates 1-91-2 and 1-91-3.

Under v.2 conditions investigated,it appeared that silicon deposited

at 700°C reacted completely with the grown silicide layer preventing silicon

growth. The attempts to produce silicides by reaction of silicon at its

melting point with large grain molybdenum did not significantly increase the



a)

Polarized
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Normal
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1-11-3

Figure 11. Optical photomicrograph of a cross sectional profile of silicon

deposited near the end of sample 1-11-3. 	 (a) Microgra p h taken
at 1000X under polarized light.	 (b) Microqraph taken at 1000X
after etching showing fine grains of silicon.
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Table VII. Experimental conditions and results of silicon deposited
on molybdenum in Experiment 1-91.

lst Silicon	 2nd Silicon	
Silicide

Substrate	 Deposition	 Deposition	
Phase on the

No.	 Temp.	 Temp.	
Surface*

( 0 0 	 (110

	1-91-2	 1410	 ---	 Mo2Si

	

1-91-3	 1440	 ---	 Mo2Si

1440	 800	 MoSi

	

800	 MoSi2

* In-situ AES analysis.



-48-

silicide grain size. A subsequent silicon deposition at 800 0 C on this sili-

cide layer was unsuccessful since silicon reacted to form MoSi. From these

results we cannot determine whether the rate of silicide formation was

governed by silicon diffusion along grain boundaries or by the high reac-

tivity rate at these temperatures. Silicides grown at high temperatures

were not found to be an inhibiting layer to further silicide formation at

the lower temperature.

(b) Silicon Deposition on Large Grain Polycrystalline MoSi 2 . In the

next series of experiments,large grain polycrystalline MoSi 2 substrates were

used which eliminated the consumption of silicon by the free metal. The

problem then becomes a study of the effect of temperature, background gas

and orientation on the growth of silicon on MoSi2.

In our first experiment, MoSi 2 substrates 1-31-1 and 1-31-3 were mounted

in the SSC. Substrate 1-31-1 was heated to 1300% for 90 minutes, after

which the temperature was lowered to 1000 0C and silicon from the p-type ingot

0
was deposited at 5000 A/min for 20 minutes. The 'in-situ Auger analysis showed

only silicon on the surface of the nominal 10 um silicon layer. Subsequent

electron channeling and topography studies in the SEM revealed 5 um diameter

silicon grains.

The second substrate, 1-31-3, was also heated to 1300°C for 90 minutes

0
and silicon was deposited at 1200°C at a rate of 250 A/min. The in-situ

Auger analysis of this sample also indicated only silicon on the surface.

After removal from the vacuum chamber, topography and electron channeling

studies with the SEM indicated 20 to 25 um diameter silicon grains. The

x-ray measurements of the ,3e large grains revealed that they were oriented

predominantly in the {111} and {110} direction.

i
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The results for these two substrates demonstrate the feasibility of

growing large grain silicon on MoSi 2 substrates. The next step in the study

was to evaluate the effects of the partial pressure of oxygen on the gran

size of the deposited silicon.

1. Effects of Oxygen Partial Pressure. Three MoSi 2 substrates

numbered 1-61-1, 1-61-2 and 1-61-3 were mounted in tantalum heating ovens.

Two major changes from the 1-31 depositions were made for these substrates.

The p-type silicon ingot was replaced by a phosphorus doped n-type silicon

ingot in the new mold assembly described in the experimental section. Also,-

the metallization unit was installed in the vacuum system and used to evdp-

orate gold contacts on the silicon films. Except for the oxygen partial

pressure, the experimental conditions were maintained nearly identical for

all three substrates. The silicon deposition temperature was 1100°C.

Silicon was deposited on substrate 1-61-3 with the lowest oxygen par-

tial pressure (1.8 x 10 -12 Torr) that could be obtained. Successively

greater oxygen partial pressures were introduced for the other two sub-

strates. Data for the three 1 -61 depositions are listed in Table VIII.

Figures 13(a), (b), and (c) show the top views of samples 1 -61-3,

1-61 -2, and 1 -61-1, respectively. There is little difference in the mor-

phology of samples prepared under an oxygen ;)artial p ressure of 1 x 10-8

Torr for 1-61-1 and 1 x 10-10 Torr for 1-61-2. Both have crystalline sili-

con grains, as confirmed by electron channeling, from 2 to 8 um in cross

section which were grouped into clusters ranging from 20 to 40 um across.

The silicon morphology of 1 -61-3, prepared in the base pressure environment

of the SSC (oxygen partial pressure of 1.8 x 10-12 Torr) is quite different.

Silicon grains as large as 60 um are evident in Figure 13(a). In other
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Fiqure ls. Optical photomicrographs taken at 50nX of silicon deposited on
1-61-3, 1-61-2, 1-61-1 at a substrate temperature, TO = 1100°C.

(a) Saan p le 1-61-3 has an oxygen partial pressure, P0 2 , durinq

deposition of 1.8 x 10- 1 - Torr.	 (b) Sample 1-61-2 deposited at

N
= 1.0 x 10- 10 Torr.	 (c) Sample 1-61-1 deposited at P0 2 =

 x 10- 8 Torr.
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regions on the surface of 1-61-3, silicon grains as large as 200 microns

were observed. Before removal from the SSC, four gold pads were evaporated

on each of the three films so that electrical measurements could be made

later.

2. Effects of Temperature. The next series of depositions on MoSi2

substrates 1-71-1, 1-71-2 and 1-71-3 was designed to study the effects of

temperature on silicon grain growth. As before, the substrates were mounted

in tantalum heating envelopes and were annealed in-situ for 200 min

at 1050%. During the anneal, the maximum pressure attained was 3 x 10-8

Torr. Each deposition occurred at a base oxygen partial pressure which was

below 5 x 10-13 Torr. For substrate 1-71-3,silicon was deposited at 6500C
0

for 100 min at a rate of >> 500 A/min. The grain size of this deposit was

below 1 pm in cross section and the surface, shown in Figure 14(a), gave a

diffuse appearance. Silicon was deposited at a rate of 1000 A/min on sub-

strate 1-71-1 for 100 min at a temperature of 950°C. The resulting deposit

had grains of 2 to 80 um in cross section with the larger grains located

near the edges. Examining these large grains with the channeling technique

showed that they were crystalline but randomly oriented. Figure 14(b) is a

surface photograph of the center region of 1-71-1,and its surface was not

significantly different than sample 1-61-3, shown in Figure 14(c) which was

prepared at 1100%.

When silicon was deposited at 800% for 100 min on substrate 1-71-2 at
0

a rate of ti 1200 A/min, the resulting film possessed a "mottled" appearance

that is readily seen in Figure 15. The diffuse and "smooth" regions that

produced the "mottled" appearance were closely examined. Figure 16(a) and

(b) illustrate three distinct surface morphologies. The surface shown in

s
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Figure 15. A photograph of sample 1-71-2 taken at 6X of silicon deposited

at 800"C on MoSi2. In the upper left corner an area of
heteroepitaxial grovith has a high reflectivity.



b
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Figure 16. Optical p hotomicrographs of silicon deposited on MoSi2 at 8000C

on sam p le 1-71-2.	 (a) p hotomicrograph of an area where hetero-

epitaxial silicon was grown on 111'- MoSi2 planes, taken at 50OX
(b) Photomicrograph showing different silicon morpholo gy which
was se parated by grain boundary, taken at 50OX.
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Figure 16(a) was examined with x-ray and electron channeling techniques and

the "terrace" like silicon features each produced identical channeling pat-

terns. Thus, the silicon deposit in the entire field shown in Figure 16(a)

is monocrystalline on a (111) MoSi 2 grain. In Figure 16(b), the two dis-

tinct morphologies are separated by a grain boundary. The smooth silicon

was crystalline as confirmed by channeling techniques, and the diffused silicon

was not. Based on these results we can state that heteroepitaxial silicon

growth can be achieved at 800 0C on (111) plane of MoSi 2 with P. lateral

extent of several millimeters.

In the next series of silicon depositions on MoSi 2 substrates the above

effect was reexamined as a function of oxygen partial pressure. Three MoSi2

substrates were first examined by x-ray diffractometry and electron channel-

ing techniques to confirm the presence of {111} planes prior to loading in

the SSC. Each substrate was annealed in-situ for 180 min at 1100 0 C and

during each evaporation, the substrate temperature was maintained at 800°C.

0
For substrate 1-111-1,silicon was deposited at a rate of 215 A/min for

300 min with the oxygen partial pressure measured as 6 x 10-13 Torr. The

characteristic "mottled" pattern did not appear on this sample but silicon

grains, shown in Figure 17(a) were measured at 2 to 20 um in cross section.

The experiment was repeated with substrate 1-111-2 in which the oxygen par-

tial pressure was 1.6 x 10 -13 Torr, but the deposition was for only 100 min
0

at 180 A/min. In one region of this sample, heteroepitaxial silicon, shown

in Figure 18, was grown in the (111) plane. These individual structures

that composed this region were approximately 100 um in cross section and

were rotated slighted around the [111] direction. However, the substrate

grain for this deposit was not of the (111) orientation a: was the case for

substrate 1-71-2.
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F i gure 18. An optical photomicrograph of 1-111-2, taken at 50X, showing in
the right corner heteroepitaxial {111} silicon on MoSi2.
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Shown in Figure 17(b) is another region of the surface of sample 1-111-2

which is cov%_-red with randomly oriented crystalline grains measuring 2 to

100 um across. The deposition on the final MoSi 2 substrate 1-111-3 was for

100 min at 280 A/min under an oxygen partial pressure of 1.6 x 10
-8

 Torr.

The grains, shown in Figure 17(c), are crystalline and measured 2 to 80 um

in cross section but there was no evidence of heteroepitaxial growth on

sample 1-111-3.

Silicon grown on molybdenum disilicide does not react with the sub-

strate since there is no free metal available. The presence of oxygen has

been s . wn to have a serious degrading effect on the growth of large grain

silicon. At 800°C, heteroepitaxial silicon grew on (111) MoSi 2 . On a dif-

ferent substrate orientation, silicon grew with a (111) orientation. Above

this temperature, silicon clustered to form large grains but this is not

epitaxy since these were randomly oriented grains. At the lower tempera-

ture, 650°C, grains of less than one micron grew on the substrate. Oxygen

present during the growth process prevented the heteroepitaxial growth of

silicon and in some cases, reduced the formation of large silicon grains.

E. Electrical Characterizatioo.

Our first electrical characterization was to determine the sign of the

majority carriers in the film with a standard hot probe Seebeck coefficient

tester. The three silicon deposits on MaSi 2 in Experiment 1-61 were found

to be n-type. Current-voltage curves were obtained across the films between

the metallic MoSi 2 substrates and the gold pads. The curves were linear or

nearly linear indicating ohmic contacts for substrates 1-61-1 and 1-61-2.

The reason for this is not clear.
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Typical diode behavior was observed however for the 1-61-3 film when the

gold contact was forward biased. A Schottky barrier was therefore present at

the silicon-gold interface and the MoSi 2-silicon interface was ohmic. Figure

18 shows a plot of current density vs voltage showing the typical exponential

behavior. The saturation current density, J s , determined at V=O, was used

to calculate the barrier height, ^ B , from the equation:

OB=gln(^T2 )s

where A is the effective Richardson constant. A value of 120 A/cm2/K2 was

chosen for P from which a barrier height of 0.63 eV was calculated.

1ha insert in Figure 19 shows the I-V curve under both forward and re-

verse bias. Several effects can account for the shape of the curve in the

reverse bias direction. When the barrier height is small, about half of

the silicon band gap in this case, the Schottky emission current dominates

at the reverse current and increases gradually with reverse bias. In addi-

tion, there may be edge leakage current around the gold pad wh i --'51 would also

distort the reverse current curve.

The results of this I-V plot were reanalyzed according to the method of

•	 Norde30 to determine the Schottky Barrier height in the presence of high

series and high semiconductor resistance. Based on this analysis the

recalculated barrier height was ^B = 0.69 eV.
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s

FORWARD B I AS VOLTAGE (V)

Figure 19. A plot of current density, JF, versus forward bias voltage.
Insert shows the current under forward and reverse bias.
Barrier height was 0.63 eV.
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SUMMARY AND CONCLUSIONS

This study produced three important results, namely: (1) the sup-

pression of silicide growth by the use of a silicon source heavily doped

with phosphorus, (2) the influence of oxygen partial pressure even at the

10-10 Torr level, on silicon grain size, and (3) the first known preparation

of silicon heteroepitaxy on a metallic substrate, namely MoSi 2 . The dis-

covery of these results followed from an understanding end control of those

factors known to be important for enhancing silicon grain growth. These

factors are: (1) deposition temperature, (2) substrate composition,

(3) substrate orientation, and (4) ambient gas environment during operation.

In the absence of phosphorus in the silicon source and under an oxygen

partial pressure in the 10 -13 Torr range, silicon grains could only be grown on

tungsten and molybdenum, among the least reactive metals with silicon, at

temperatures below 650'C. At higher temperatures,the deposited silicon re-

acted completely to form silicide films leaving no free silicon. The sili-

con grains grown below 650°C were one micron or less in cross-section. The

addition of phosphorus to the silicon source allowed silicon films to be

deposited on tungsten, molybdenum and tantalum at temperatures as high as

750°C before silicide reactions prevented the formation of free silicon. On

a single tantalum metal substrate, an additional one hundred degrees, from 650

to 750°C, produced nearly one order of magnitude increase in silicon grain

size to a maximum of about five microns across. However, this drain size was

too small for silicon solar cell fabrication and forced the consideration of

bulk silicide substrates to completely suppress the silicide formation above

750% by removing the free metal in the substrate or a potential reactant with

the arriving silicon vapor.
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The use of large grain polycrystalline MoSi 2 substrates was successful

at suppressing silicide reactions as a factor in silicon grain growth even

at temperatures as high as 1100°C. The silicon grain morphology,as deposit-

ed on MoSi 2 substrates,depended heavily on deposition temperature, partial

pressure of oxygen present during deposition, and the orientation of the

MoSi 2 grains. Above 950°C silicon films had grains measuring 80 microns

across if the oxygen partial pressure was kept below 10-12 Torr. Little

effect of the MoSi 2 grain orientation was evident under these conditions.

At 1100 0 C,the addition of 10-10 Torr partial pressure of oxygen reduced the

silicon grain size,by a factor of ten,to eight microns in cross-section.

This effect of oxygen partial pressure, even at the very low level of

10-10 Torr, on the silicon grain size was one of the most important results

of this entire study.

When the MoSi 2 substrate temperature was varied from 650°C to 950°C

and the oxygen partial pressure was maintained at 4 x 10-13 Torr, signifi-

cant changes in silicon grain morphology were observed. At 650°C, sub-

micron silicon grains were Found similar in appearance to those observed on

pure molybdenum substrates. Little effect of the MoSi 2 grain orientation

was evident. At 950°C, silicon grains many tens of microns across were

found and again little evidence of MoSi 2 grain orientation effects was found.

At 800% however, the results were dramatically different. Large differences

in silicon grain size were discovered as a function of MoSi 2 grain orienta-

tion. For (111) MoSi 2 grain, single crystal silicon films were grown

several millimeters in cross-section, which is more than adequate for sili•.

con solar cell fabrication. For other MoSi 2 grain orientations submicron
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silicon grains were observed. The discovery of heteroepitaxial silicon

growth on (111) MoSi 2 at 800°C represents the second most important result

of this work. Subsequent depositions at 800°C on MoSi 2 substrates showed

the effects of oxygen partial pressure, silicon deposition rate, and silicon

thickness on the silicon film morphology. It has become clear that the

preparation of heteroepitaxial silicon on MoSi 2 substrates requires very

careful control of all of those parameters known to affect silicon grain

growth.

i
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RECOMMENDATIONS

Based on the results of this study we make the following recommendations:

1. Our discovery of the enhanced silicon grain growth on MoSi 2 at 1100°C for

oxygen partial pressure below 10-10 Torr represents a significant re-

search area for the utilization of a space vacuum facility for materials

processing. It compares in significance to our reported ultrapurifica-

tion of thorium by electrotransport processing at pressures below 10-10

Torr.31

2. The preparation of heteroepitaxial silicon on (111) grains of MoSi 2 at

800% provides the basis for further extensive studies involving fabri-

cation of large single crystals of MoSi 2 . These samples would permit

detailed studies of the effects of silicon deposition rate, substrate

temperature and oxygen partial pressure.

3. The role of phosphorus in suppressin q the silicide formation rate is

not understood. Further studies involving different source dopant con-

c-^ntrations should be pursued with special reference to the solid solu-

bility of phosphorus in silicon and varicas silicide compounds so that

a prediction of the phosphorus distribution in a growing silicon-silicide

structure could be rude.

4. Attempts to utilize other large grain polycrystalline silicides as sub-

strates for silicon heteroepitaxy should be pursued vigorously. Candi-

date silicides should be selected from those already known to grow epi-

taxially from metal films on single crystal silicon such as Pd2Si and

FeSi2.
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5. In addition to large grain polycrystalline forms of silicides such as

FeSi 2 , elemental metals, e.g. iron, may be used to first grow thin

films of the silicide on which the silicon film would be deposited.
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