111 research outputs found
Performance analysis and comparison of m x n zero forcing and MMSE equalizer based receiver for mimo wireless channel
Wireless transmission is affected by fading and interference effects which can be combated with equalizer.The useof MIMO system promises good improvement in terms of spectral efficency,link relaibility andSignal to Noise Ratio (SNR).The effect of fading and interference always causes an issue for signal recovery in wireless communication. Equalizationcompensates for Intersymbol Interference (ISI) created by multipath within time dispersive channels. This paper analyses theperformance of Zeroforcing and MMSE equalizer for MIMO wireless chaneels. The simulation results are obtained usingMatLab tool box version 7.0 at RF signal processing lab.The Bit Error Rate (BER) characteristics for the various transmittingand receiveing antennna is simulated in matlab tool box and many advantages and disdvantagesof the system is descrbed.The simulation results show that the equalizer based zero forcing receiver is good for noise free channel and is successfulin remving ISI,but MMSE is a better choice than ZF in terms of BER charateristics and under Noise performance
Retorting Photocorrosion and Enhanced Charge Carrier Separation at CdSe Nanocapsules by Chemically Synthesized TiO2 Shell for Photocatalytic Hydrogen Fuel Generation
Metal chalcogenide‐based semiconductor nanostructures are promising candidate for photocatalytic or photoelectrocatalytic hydrogen generation. In order to protect CdSe from photocorrosion, a layer of TiO 2 wrapped (shell) onto CdSe (core) nanocapsule via the post‐synthesis process. The morphology studies confirm that a thin crystalline TiO 2 shell (3‐8 nm) wrapped in all the three directions onto CdSe core and thickness of the shell can be controlled through modulating titania precursor concentration. The feasibility of pristine CdSe nanocapsules and CdSe@TiO 2 in transforming visible light to hydrogen conversion was tested through photocatalysis reaction. The CdSe@TiO 2 nanocapsules generating a four‐fold high rate of hydrogen gas than pristine CdSe. In order to understand the role of shell@core, we have examined photoelectrochemical and impedance analysis. The CdSe@TiO 2 nanocapsules showed high photoelectric current generation and less charge transfer resistance at electrode/electrolyte interfaces compared to pristine CdSe. These studies endorse that chemically synthesized crystalline TiO 2 shell played a multifunctional role in (a) surface passivation from photocorrosion, (b) promoting photocharge carrier separation via tunneling process between CdSe and TiO 2 interface. As a result, CdSe@TiO 2 nanocapsules showed a high conversion efficiency of 12.9% under visible light irradiation (328 mW.cm ‐2 ) and turn over frequency is 0.05018 s ‐1 . atom ‐1
Interactive on smart classroom system using beacon technology
The emergence of many internet industries ushers in IOT era, and about to bring us to the point of universal connectivity. In the field of education, the IOT technology has a broad applicable prospect for a more interactive and intelligent way by improving the quality of teaching and management. The proposed class affair management system is mean to enrich the interaction between lecturers and students which in an efficient and smart way. Based on the existing model, a layered architecture is proposed to build the beacon based campus management system. Backend device and protocols compose the physical layer to collect the raw data from physical objects. Data link layer and control layer are responsible for forming required package and sending to corresponding layer. Beacon technology used for proposed design applies Bluetooth low energy 4.0 standard which allowing devices exchange data through Bluetooth at an extremely low power consumption-using a single coin cell battery can last for several years. Saved up to 97 percentage energy compared with similar system. The entire proposed platform allows participants to bring personally owned devices to access campus management system. Through location information, teaching activities and personalized information notification can be automatically accomplished, which will inspire the innovation and development of classroom teaching mode. Beacon technology has a great potential that can be completely transplanted into other scenario such as the hypermarket and library
Solar hydrogen generation from organic substance using earth abundant CuS–NiO heterojunction semiconductor photocatalyst
This work explores the critical role of NiO co-catalyst assembled on the surface of a CuS primary photocatalyst which effectively improves interface properties and enhances solar-to-hydrogen production by prolonging lifetime of photo-excitons generated at the CuS surface. The nanoscale CuS/NiO heterojunction is formulated using hydrothermal and wet impregnation methods. The resultant CuS/NiO composite shows optical absorbance between 380-780 nm region. The type-II energetic structure formed at CuS/NiO heterojunction facilitates rapid charge separation and as a result, the CuS/NiO composite exhibits 13 folds higher photocatalytic water splitting performance than CuO and NiO. The champion CuO/NiO photocatalyst is first identified by screening the catalysts using a preliminary water splitting test reaction under natural Sunlight irradiation. After the optimization of the catalyst, it was further explored for enhanced photocatalytic hydrogen production using different organic substances dispersed in water (alcohols, amine and organic acids). The champion CuS/NiO catalyst(CPN-2) exhibited the photocatalytic hydrogen production rate of 52.3 mmol.h-1.g-1cat in the presence of lactic acid-based aqueous electrolyte and, it is superior than hydrogen production rate obtained in the presence of other organic substances (triethanolamine, glycerol, ethylene glycol, methanol) tested under identical experimental conditions. These results indicate that the energetic structure of CuS/NiO photocatalyst is favorable for photocatalytic oxidation of lactic acid or reformation of lactic acid. The oxidation of lactic acid contributes oxidative electrons for enhanced hydrogen generation as well as protects CuS from photocorrosion. The modification of surface property and energetic structure of CuS photocatalyst by the NiO co-catalyst improves photogenerated charge carrier separation and in turn enhances the solar-to-hydrogen generation. The recyclability tests showed the potential of CPN-2 photocatalystfor prolonged photocatalytic hydrogen production while continuous supply of lactic acid feedstock is available
THIRTY FIVE YEARS OF OPERATIONAL RESEARCH PROJECT FOR DRYLAND AGRICULTURE : ACHIEVEMENTS AND IMPACTS (1976 to 2012)
Not AvailableAgriculture is the backbone of Indian economy and rainfed agro-ecosystem occupies an
important place in Indian agriculture, covering 68 per cent of the cultivated area (96 m.ha)
supporting 40 per cent human, 60 per cent livestock population and producing 44 per cent of the
food requirements thus playing a pivotal role in India’s food security.
Five out of ten Agro-Climatic Zones in Karnataka were classified as dry zones covering
63 per cent of the total geographical area and 71 per cent of the net sown area, with substantial
contribution to agricultural production from dry lands. About 57 per cent of food grain production
in Karnataka comes from rainfed areas while, 97 per cent of total pulses and 80 per cent oilseeds
were produced in dry land areas.
Research on dryland agriculture in the red soil regions of Karnataka was started in 1970
with the establishment of All India Coordinated Research Project for Dryland Agriculture
(AICRPDA) at Gandhi Krishi Vignana Kendra (GKVK), Bangalore,Not Availabl
Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth
Background: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. Methods and Findings: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. Conclusion: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion
Global estimates on the number of people blind or visually impaired by cataract: a meta-analysis from 2000 to 2020
Background: To estimate global and regional trends from 2000 to 2020 of the number of persons visually impaired by cataract and their proportion of the total number of vision-impaired individuals. Methods: A systematic review and meta-analysis of published population studies and gray literature from 2000 to 2020 was carried out to estimate global and regional trends. We developed prevalence estimates based on modeled distance visual impairment and blindness due to cataract, producing location-, year-, age-, and sex-specific estimates of moderate to severe vision impairment (MSVI presenting visual acuity <6/18, ≥3/60) and blindness (presenting visual acuity <3/60). Estimates are age-standardized using the GBD standard population. Results: In 2020, among overall (all ages) 43.3 million blind and 295 million with MSVI, 17.0 million (39.6%) people were blind and 83.5 million (28.3%) had MSVI due to cataract blind 60% female, MSVI 59% female. From 1990 to 2020, the count of persons blind (MSVI) due to cataract increased by 29.7%(93.1%) whereas the age-standardized global prevalence of cataract-related blindness improved by −27.5% and MSVI increased by 7.2%. The contribution of cataract to the age-standardized prevalence of blindness exceeded the global figure only in South Asia (62.9%) and Southeast Asia and Oceania (47.9%). Conclusions: The number of people blind and with MSVI due to cataract has risen over the past 30 years, despite a decrease in the age-standardized prevalence of cataract. This indicates that cataract treatment programs have been beneficial, but population growth and aging have outpaced their impact. Growing numbers of cataract blind indicate that more, better-directed, resources are needed to increase global capacity for cataract surgery.</p
Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019
Background: Health-care needs change throughout the life course. It is thus crucial to assess whether health systems provide access to quality health care for all ages. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019), we measured the Healthcare Access and Quality (HAQ) Index overall and for select age groups in 204 locations from 1990 to 2019. Methods: We distinguished the overall HAQ Index (ages 0–74 years) from scores for select age groups: the young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) groups. For GBD 2019, HAQ Index construction methods were updated to use the arithmetic mean of scaled mortality-to-incidence ratios (MIRs) and risk-standardised death rates (RSDRs) for 32 causes of death that should not occur in the presence of timely, quality health care. Across locations and years, MIRs and RSDRs were scaled from 0 (worst) to 100 (best) separately, putting the HAQ Index on a different relative scale for each age group. We estimated absolute convergence for each group on the basis of whether the HAQ Index grew faster in absolute terms between 1990 and 2019 in countries with lower 1990 HAQ Index scores than countries with higher 1990 HAQ Index scores and by Socio-demographic Index (SDI) quintile. SDI is a summary metric of overall development. Findings: Between 1990 and 2019, the HAQ Index increased overall (by 19·6 points, 95% uncertainty interval 17·9–21·3), as well as among the young (22·5, 19·9–24·7), working (17·2, 15·2–19·1), and post-working (15·1, 13·2–17·0) age groups. Large differences in HAQ Index scores were present across SDI levels in 2019, with the overall index ranging from 30·7 (28·6–33·0) on average in low-SDI countries to 83·4 (82·4–84·3) on average in high-SDI countries. Similarly large ranges between low-SDI and high-SDI countries, respectively, were estimated in the HAQ Index for the young (40·4–89·0), working (33·8–82·8), and post-working (30·4–79·1) groups. Absolute convergence in HAQ Index was estimated in the young group only. In contrast, divergence was estimated among the working and post-working groups, driven by slow progress in low-SDI countries. Interpretation: Although major gaps remain across levels of social and economic development, convergence in the young group is an encouraging sign of reduced disparities in health-care access and quality. However, divergence in the working and post-working groups indicates that health-care access and quality is lagging at lower levels of social and economic development. To meet the needs of ageing populations, health systems need to improve health-care access and quality for working-age adults and older populations while continuing to realise gains among the young. Funding: Bill & Melinda Gates Foundation
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
- …