25 research outputs found

    Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis

    Get PDF
    The mechanisms involved in sensing oxidative signalling molecules, such as H2O2, in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of Met (methionine) to MetSO (Met sulfoxide) can couple oxidative signals to changes in protein phosphorylation. We demonstrate that when a Met residue functions as a hydrophobic recognition element within a phosphorylation motif, its oxidation can strongly inhibit peptide phosphorylation in vitro. This is shown to occur with recombinant soybean CDPKs (calcium-dependent protein kinases) and human AMPK (AMP-dependent protein kinase). To determine whether this effect may occur in vivo, we monitored the phosphorylation status of Arabidopsis leaf NR (nitrate reductase) on Ser534 using modification-specific antibodies. NR was a candidate protein for this mechanism because Met538, located at the P+4 position, serves as a hydrophobic recognition element for phosphorylation of Ser534 and its oxidation substantially inhibits phosphorylation of Ser534 in vitro. Two lines of evidence suggest that Met oxidation may inhibit phosphorylation of NR-Ser534 in vivo. First, phosphorylation of NR at the Ser534 site was sensitive to exogenous H2O2 and secondly, phosphorylation in normal darkened leaves was increased by overexpression of the cytosolic MetSO-repair enzyme PMSRA3 (peptide MetSO reductase A3). These results are consistent with the notion that oxidation of surface-exposed Met residues in kinase substrate proteins, such as NR, can inhibit the phosphorylation of nearby sites and thereby couple oxidative signals to changes in protein phosphorylation

    Phosphorylation of the Amino Terminus of Maize Sucrose Synthase in Relation to Membrane Association and Enzyme Activity

    No full text
    Sucrose synthase (SUS) is phosphorylated on a major, amino-terminal site located at Ser-15 (S15) in the maize (Zea mays) SUS1 protein. Site- and phospho-specific antibodies against a phosphorylated S15 (pS15) peptide allowed direct analysis of S15 phosphorylation in relation to membrane association. Immunoblots of the maize leaf elongation zone, divided into 4-cm segments, demonstrated that the abundance of soluble (s-SUS) and membrane (m-SUS) SUS protein showed distinct positional profiles. The content of m-SUS was maximal in the 4- to 8-cm segment where it represented 9% of total SUS and occurred as a peripheral membrane protein. In contrast, s-SUS was highest in the 12- to 16-cm segment. Relative to s-SUS, m-SUS was hypophosphorylated at S15 in the basal 4 cm but hyperphosphorylated in apical segments. Differing capabilities of the anti-pS15 and anti-S15 peptide antibodies to immunoprecipitate SUS suggested that phosphorylation of S15, or exposure of unphosphorylated SUS to slightly acidic pH, altered the structure of the amino terminus. These structural changes were generally coincident with the increased sucrose cleavage activity that occurs at pH values below 7.5. In vitro S15 phosphorylation of the S170A SUS protein by a maize calcium-dependent protein kinase (CDPK) significantly increased sucrose cleavage activity at low pH. Collectively, the results suggest that (1) SUS membrane binding is controlled in vivo; (2) relative pS15 content of m-SUS depends on the developmental state of the organ; and (3) phosphorylation of S15 affects amino-terminal conformation in a way that may stimulate the catalytic activity of SUS and influence membrane association

    Determination of Structural Requirements and Probable Regulatory Effectors for Membrane Association of Maize Sucrose Synthase 1

    No full text
    Sucrose (Suc) synthase (SUS) cleaves Suc to form UDP glucose and fructose, and exists in soluble and membrane-associated forms, with the latter proposed to channel UDP glucose to the cellulose-synthase complex on the plasma membrane of plant cells during synthesis of cellulose. However, the structural features responsible for membrane localization and the mechanisms regulating its dual intracellular localization are unknown. The maize (Zea mays) SUS1 isoform is likely to have the intrinsic ability to interact directly with membranes because we show: (1) partial membrane localization when expressed in Escherichia coli, and (2) binding to carbonate-stripped plant microsomes in vitro. We have undertaken mutational analyses (truncations and alanine substitutions) and in vitro microsome-binding assays with the SUS1 protein to define intrinsic membrane-binding regions and potential regulatory factors that could be provided by cellular microenvironment. The results suggest that two regions of SUS1 contribute to membrane affinity: (1) the amino-terminal noncatalytic domain, and (2) a region with sequence similarity to the C-terminal pleckstrin homology domain of human pleckstrin. Alanine substitutions within the pleckstrin homology-like domain of SUS1 reduced membrane association in E. coli and with plant microsomes in vitro without reducing enzymatic activity. Microsomal association of wild-type SUS1 displayed cooperativity with SUS1 protein concentration and was stimulated by both lowering the pH and adding Suc. These studies offer insight into the molecular level regulation of SUS1 localization and its participation in carbon partitioning in plants. Moreover, transgenics with active SUS mutants altered in membrane affinity may be of technological utility

    Light and Metabolic Signals Control the Selective Degradation of Sucrose Synthase in Maize Leaves during Deetiolation1[OA]

    No full text
    The content and activity of Suc (Suc) synthase (SUS) protein is high in sink organs but low in source organs. In this report, we examined light and metabolic signals regulating SUS protein degradation in maize (Zea mays) leaves during deetiolation. We found that SUS protein accumulated in etiolated leaves of the dark-grown seedlings but was rapidly degraded upon exposure to white, blue, or red light. This occurred concurrent with the accumulation of photosynthetic enzymes, such as Rubisco and Rubisco activase, and enzymes of Suc biosynthesis such as Suc-phosphate synthase. Deetiolation-induced SUS degradation was not inhibited by the proteasome inhibitor MG132. Moreover, neither full-length nor truncated SUS phosphorylated at the serine-170 site was found in the crude 26S proteasome fraction (150,000g postmicrosomal pellet) isolated in the presence of MG132. However, SUS degradation was strongly inhibited by feeding cycloheximide or amino acids to detached leaves, while Suc feeding had no effect. Of the amino acids tested, exogenous glutamate had the greatest effect. Collectively, these results demonstrate that SUS protein degradation during deetiolation: (1) is selective; (2) can be triggered by either blue- or red light-mediated signaling pathways; (3) does not involve the 26S proteasome; and (4) is inhibited by free amino acids. These findings suggest that SUS degradation is important to supply residues for the synthesis of other proteins required for autotrophic metabolism

    Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis.

    No full text
    Hardin SC, Tang G-Q, Scholz A, HoltgrƤwe D, Winter H, Huber SC. Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J. 2003;35(5):588-603.Sequence analysis identified serine 170 (S170) of the maize (Zea mays L.) SUS1 sucrose synthase (SUS) protein as a possible, second phosphorylation site. Maize leaves contained two calcium-dependent protein kinase activities and a calcium-independent kinase activity with characteristics of an sucrose non-fermenting 1 (SNF1)-related protein kinase. Phosphorylation of the novel S170 and the known serine 15 (S15) site by these protein kinases was determined in peptide substrates and detected in SUS1 protein substrates utilizing sequence- and phosphorylation-specific antibodies. We demonstrate phosphorylation of S170 in vitro and in vivo. The calcium-dependent protein kinases phosphorylated both S170 and S15, whereas SNF1-related protein kinase activity was restricted to S15. Calcium-dependent protein-kinase-mediated S170 and S15 phosphorylation kinetics were determined in wild-type and mutant SUS1 substrates. These analyses revealed that kinase specificity for S170 was threefold lower than that for S15, and that phosphorylation of S170 was stimulated by prior phosphorylation at the S15 site. The SUS-binding peptides encoded by early nodulin 40 (ENOD40) specifically antagonized S170 phosphorylation in vitro. A model wherein S170 phosphorylation functions as part of a mechanism targeting SUS for proteasome-mediated degradation is supported by the observations that SUS proteolytic fragments: (i) were detected and possessed relatively high phosphorylated-S170 (pS170) stoichiometry; (ii) were spatially coincident with proteasome activity within developing leaves; and (iii) co-sedimented with proteasome activity. In addition, full-length pS170-SUS protein was less stable than S170-SUS in cultured leaf segments and was stabilized by proteasome inhibition. Post-translational control of SUS protein level through pS170-promoted proteolysis may explain the specific and significant decrease in SUS abundance that accompanies the sink-to-source transition in developing maize leaves
    corecore