38 research outputs found

    Complementing Cancer Metastasis

    Get PDF
    Complement is an effector of innate immunity and a bridge connecting innate immunity and subsequent adaptive immune responses. It is essential for protection against infections and for orchestrating inflammatory responses. Recent studies have also demonstrated contribution of the complement system to several homeostatic processes that are traditionally not considered to be involved in immunity. Thus, complement regulates homeostasis and immunity. However, dysregulation of this system contributes to several pathologies including inflammatory and autoimmune diseases. Unexpectedly, studies of the last decade have also revealed that complement promotes cancer progression. Since the initial discovery of tumor promoting role of complement, numerous preclinical and clinical studies demonstrated contribution of several complement components to regulation of tumor growth through their direct interactions with the corresponding receptors on tumor cells or through suppression of antitumor immunity. Most of this work, however, focused on a role of complement in regulating growth of primary tumors. Only recently, a few studies showed that complement promotes cancer metastasis through its contribution to epithelial-to-mesenchymal transition and the premetastatic niche. This latter work has shown that complement activation and generation of complement effectors including C5a occur in organs that are target for metastasis prior to arrival of the very first tumor cells. C5a through its interactions with C5a receptor 1 inhibits antitumor immunity by activating and recruiting immunosuppressive cells from the bone marrow to the premetastatic niche and by regulating function and self-renewal of pulmonary tissue-resident alveolar macrophages. These new advancements provide additional evidence for multifaceted functions of complement in cancer

    On the implementation of the gamma function for image correction on a endoscopic camera

    Get PDF
    This paper describes part of project that implemented the image processing of a CMOS sensor for endoscopic purposes. The sensor is a small sized device of 1x1mm2 and the image processing has been done inside a FPGA. This part of the work describes the implementation of the Gamma function with a balance between the resources needed and the accuracy. A linear piecewise solution was used that stores the values for 31 gamma functions with values ranging from 1 to 4 with 0.1 steps. The solution developed is 10 bit based, was coded in VHDL and is implemented in a Spartan 6 FPGA. The results show that it is an accurate solution that has a small footprint in terms of used resources.info:eu-repo/semantics/publishedVersio

    Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    Get PDF
    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm × 1 mm × 1.65 mm is used. Due to the physical prop erties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.info:eu-repo/semantics/publishedVersio

    Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma

    Get PDF
    Purpose: Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. Experimental design: Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. Results: Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. Conclusions: Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells

    Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

    Get PDF
    Background: Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input. Findings: In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively. Interpretation: Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries
    corecore