
Full image-processing pipeline in
field-programmable gate array for a
small endoscopic camera

Sheikh Shanawaz Mostafa
L. Natércia Sousa
Nuno Fábio Ferreira
Ricardo M. Sousa
Joao Santos
Martin Wäny
F. Morgado-Dias

Sheikh Shanawaz Mostafa, L. Natércia Sousa, Nuno Fábio Ferreira, Ricardo M. Sousa,
Joao Santos, Martin Wäny, F. Morgado-Dias, “Full image-processing pipeline in field-
programmable gate array for a small endoscopic camera,” J. Electron. Imaging
26(1), 013005 (2017), doi: 10.1117/1.JEI.26.1.013005.

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Full image-processing pipeline in field-programmable gate
array for a small endoscopic camera

Sheikh Shanawaz Mostafa,a,b,* L. Natércia Sousa,b Nuno Fábio Ferreira,b,c Ricardo M. Sousa,d Joao Santos,d

Martin Wäny,d and F. Morgado-Diasb,c

aUniversity of Lisbon-Instituto Superior Técnico, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
bMadeira Interactive Technologies Institute, Polo Científico e Tecnológico da Madeira, floor-2, Caminho da Penteada, Funchal 9020-105, Portugal
cUniversidade da Madeira, Praca do Município, Colégio dos Jesuítas-Rua dos Ferreiros, Funchal 9000-082, Portugal
dAWAIBA, CMOSIS PORTUGAL, Madeira Tecnopolo, Funchal 9020-105, Portugal

Abstract. Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The
camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce
discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental
goals, a small endoscopy camera with a footprint of 1 mm × 1 mm × 1.65 mm is used. Due to the physical prop-
erties of the sensors and human vision system limitations, different image-processing algorithms, such as noise
reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image
or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to
accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also
been developed to display and control the image-processing pipeline. The control and data transfer are done
by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image
and fits in a Xilinx Spartan-6LX150 FPGA. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.1.013005]

Keywords: endoscopic camera; image processing; field-programmable gate array; high frame rate.

Paper 16510P received Jun. 23, 2016; accepted for publication Dec. 13, 2016; published online Jan. 11, 2017.

1 Introduction
In the United States of America alone, 18,328,000 endoscop-
ies were performed in 2009, taking into account the com-
bined numbers of upper, lower, and biliary endoscopies.
The estimated cost of these gastrointestinal endoscopies
was of 32.4 billion US dollars.1 Endoscopy is not only
used to look at the internal organs of the body, which is oth-
erwise impossible without a surgical procedure, but also used
in some surgical procedures. Nowadays, it is also used for
screening for colon and rectal cancers. Since the procedure
involves placing a viewing device inside the living body, the
size of the camera and the quality of images are the main
factors to take into consideration when designing such a sys-
tem. Considering the implementation alternatives, CMOS
technology consumes less power and is simpler to control
than CCD technology2 and this is the reason the endoscopy
system developed in this paper uses a CMOS image sensor
that has small dimensions of 1.0 mm × 1.0 mm × 1.7 mm
(width × length × height). This CMOS sensor generates
10-bit pixels with a Bayer filter mosaic and it has a high
frame rate. The designed system needs to demosaic the pix-
els to obtain proper RGB colors. In addition to that, because
of the manufacturing process, there are differences between
pixel size and position as well as other electronic and optical
issues related to the photo transistors that cause a fixed pat-
tern noise (FPN).3 Therefore, noise reduction and image cor-
rection are needed to obtain the true RGB image. Because of
the high frame rate of the chosen CMOS sensor, it is impos-
sible to process all the frames in the computer. To show the

video, the real-time frame is dropped which results in the loss
of information and resources.

One of the obvious solutions to this problem is to use a
field-programmable gate array (FPGA) because of the paral-
lel architecture that can be created.4 This kind of parallel and
custom architecture make it a suitable candidate for solving
this kind of problem. Although the main algorithms of the
system are pipelined, parallelism is needed for simultane-
ously processing different color information as well as some
internal operations of the algorithms so the system can proc-
ess the information in real time. In graphics processing units
(GPUs), parallelism can be achieved in the algorithms to run
faster than a conventional processor. Nevertheless, GPUs
have a high-energy consumption level, need to be connected
to a personal computer (PC), and the solution’s speed would
depend on the hardware and operating system. On the other
hand, some research done in this field is image compression
in application-specific integrated circuits (ASICs),5,6 which
have all the facilities of FPGAs, but are costly to design
(layout, masks, or other manufacturing steps). That is why
FPGAs are chosen for this work. In FPGA,7–9 gamma
correction,10 demosaicking,11 image enhancements, and
classification12 are done. These FPGA-based systems are
designed for solving one problem. They do not have set of
solutions for most of the common problems of sensor image
processing. Most of the systems use external memory as pre-
sented in Ref. 13. An external memory type of implementation
consumes more power and resources than internal memory.
The lack of a total image-processing pipeline in FPGA for
an endoscopic system motivated the design of a complete
image-processing pipeline without using external memory.

*Address all correspondence to: Sheikh Shanawaz Mostafa, E-mail: sheikh
.mostafa@tecnico.ulisboa.pt 1017-9909/2017/$25.00 © 2017 SPIE and IS&T

Journal of Electronic Imaging 013005-1 Jan∕Feb 2017 • Vol. 26(1)

Journal of Electronic Imaging 26(1), 013005 (Jan∕Feb 2017)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1117/1.JEI.26.1.013005
http://dx.doi.org/10.1117/1.JEI.26.1.013005
http://dx.doi.org/10.1117/1.JEI.26.1.013005
http://dx.doi.org/10.1117/1.JEI.26.1.013005
http://dx.doi.org/10.1117/1.JEI.26.1.013005
http://dx.doi.org/10.1117/1.JEI.26.1.013005
mailto:sheikh.mostafa@tecnico.ulisboa.pt
mailto:sheikh.mostafa@tecnico.ulisboa.pt
mailto:sheikh.mostafa@tecnico.ulisboa.pt
mailto:sheikh.mostafa@tecnico.ulisboa.pt

For designing a full image-processing pipeline in an FPGA
for a small endoscopic camera to solve the previously men-
tioned problems, the following criteria are applied in this work:

• A good but minimum image pipeline to get good
images at high frame rates.

• A system totally customized for FPGA implementation
using VHDL.

• No reliance on any external resources such as external
RAM or processors.

• Fully controllable algorithms using a custom made
graphics user interface (GUI) from a computer viewer
over USB 3.0 for easier control.

• Hardware implementation was done and compared
with two software implementation in PC.

2 System Setup
A full endoscopy system has been developed (Fig. 1) with a
sensor, a standalone image-processing system on an FPGA,

and a viewer to show the picture or video. The system senses
the light through the sensor (Fig. 2(a)). The sensor sends
the data to the FPGA board using a 2-m-flat ribbon cable,
with four copper wires. After processing the raw data
using image-processing algorithms on the FPGA, the system
uses the USB 3.0 interface to send the picture to the com-
puter. Finally, the received data are seen on the monitor
by the viewer. A brief description of these components is
given in the following sections.

2.1 Sensor
In general, a digital image sensor uses a architecture suitable
for scaling up to several mega pixel resolutions as well as
additional electronic parts such as analog to digital converter,
low-power charge pumps, exposure control, color recon-
struction, and mobile processor interfaces. However, for
the “2-D NanEye Module” [Fig. 2(a)] CMOS sensor, the
nonmandatory features were removed to achieve a small
footprint. The CMOS sensor was optimized to avoid decou-
pling capacitors and to transmit the raw pixels data along a
cable up to 3 m in length. True silicon via is used to provide
electrical contact using tiny via holes through the silicon to
connect to the transistors on the opposite side with solder
balls. This solution allows the final package size to be kept
to proportions that are similar to the size of the image sensor.

The camera lens is etched out of quartz glass and is
covered by the Bayer filter [Fig. 2(b)] to achieve a color pic-
ture. In Fig. 2(b), R, G, and B indicate the red, green,
and blue colors of the filter and the subscripts of R, G, B
shows the row and the column numbers of the pixel. The
physical dimensions are 1.0 mm × 1.0 mm × 1.65 mm
with 250 × 250 pixels (62.5 k). It has an electronic rolling
shutter that can capture 44 to 55 frames per second
(fps).14,15 The sensor vendor Awaiba is a supplier and devel-
oper of image sensors for this work. The sensor specification
mentions a maximum of 55 fps to minimize the risk of dam-
aging the sensor in the long run, however, it is possible to
reach 60 fps by changing the supply voltage of the sensor
operating at room temperature.

2.2 Field-Programmable Gate Array and Extension
Boards

A CESYS EFM-02 board which has an embedded FPGA
module based on a Xilinx Spartan-6LX150 FPGA is used.Fig. 1 Proposed endoscopy system setup.

Fig. 2 (a) CMOS “NanEye” sensor and (b) Bayer pattern for the sensor.

Journal of Electronic Imaging 013005-2 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

The size of the PCB is 52.6 mm × 82.6 mm. The board has
2-Gbit DDR2 memory and a 64-Mbit dual SPI flash. The
board is USB 3.0 bus-powered with a versatile Cypress
EZ-FX3 controller for super speed interface [Fig. 3(b)].
Awaiba’s “AWAIBA NANEYEUSB 3.0 v1.0” adapter board
is used for sensor interfacing. It is possible to have four sen-
sors with light-emitting diodes connected to the board simul-
taneously. There is a JTAG and there are several optional
I/Os pins to debug the system. It has almost the same dimen-
sions as the CESYS EFM-02 board Fig. 3(a).16

2.3 Awaiba Viewer
The Awaiba Viewer (version number v2.19.1.2) is a software
tool to prepare the image for display in a PC and it was devel-
oped in C# by Awaiba. The main purpose of the Awaiba
Viewer is to show the picture to users and it is connected
to the FPGA board through the Cypress EZ-FX3 controller.
The wishbone bus17 is applied on top of this to control the
image-processing algorithms in the FPGA side. The visual

interface is shown in Fig. 4. It has several options to take
user defined values to control the image-processing pipeline
and other user input components for producing and showing
the picture.

However, this Awaiba Viewer was only able to capture the
raw data from the sensor and all the image processing was
done in the PC using in-house algorithms and open source
computer vision (OpenCV)18 algorithms. OpenCV is an open
source computer vision library mostly written in C/C++. It
can be used even for hardware acceleration. Its Python and
Java interfaces support Windows, Linux, Mac OS, iOS, and
Android. So in order to allow changing the image processing
from the PC to the FPGA, the required adjustments were
made on the Awaiba Viewer. A similar design template is
kept in addition so that it can control the parameters for
the FPGA. The new version of the viewer was developed
for this research and is not commercially available by the
sensor vendor. A brief description of new viewer’s control,
input, and display options is provided below. Later, in this

Fig. 3 (a) Top view extension board for connecting the sensor. (b) Bottom view FPGA Board.

Fig. 4 Graphical user interface and the viewer for displaying the video/images capture from sensor.

Journal of Electronic Imaging 013005-3 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

paper, Awaiba’s in-house algorithms will be mentioned as
Awaiba’s algorithms.

• Play button: This button is used to show or start the
video feed from the FPGA.

• Record video: This button is for saving the video cap-
tured by the viewer.

• Capture picture: As the name suggests, this button is
for saving the picture or taking a snapshot of the video.

• Sensor information: This is a display for showing the
information about the sensor such as sensor frame rate,
frame id sent by the FPGA, the display frame rate, and
the maximum frame rate.

• Display picture or video: This window shows the pic-
ture or video captured or processed by the viewer.

• Sensor control: The sensor control panel is a collection
of all the buttons required to control the sensor as well
as the image-processing algorithms. All the values
defined by the user are transmitted to the FPGA
using the USB 3.0 end point. All the algorithms
have a default enable/disable button so that it is pos-
sible to enable/disable any algorithm using the viewer.
Other parameters unique to each algorithm can be con-
trolled by the viewer and are shown in Table 1.

• Process type button: It allows the user to choose which
image-processing pipeline should be applied. There are
three options: the one from Awaiba (implemented by
software), the one from OpenCV (implemented by
software), and the one implemented on the FPGA.

• Debug control registers: This window is for debugging
the sensor control and uses the USB 3.0 end point to
write the registers on the FPGA. From this window, the
user can check whether the register is properly written
or not.

• Windows menu: This is a classic window menu. It has
close, minimize, and restore buttons.

3 Image-Processing Pipeline
The image-processing pipeline includes the same kind of
processing and data flow for all three options (OpenCV,
Awaiba, and FPGA) allowed in this system (Fig. 5). The
differences are in the implementation (by software or by
hardware) and in the algorithms used to do the processing.
The OpenCV image-processing pipeline implements algo-
rithms from an OpenCV library, Awaiba algorithms are
written by Awaiba in C#, and the FPGA algorithms were
implemented in VHDL using fixed point calculation. The
algorithms used in the image-processing pipeline are
explained as follows.

3.1 Frames Mean
The frames mean block has the main purpose of reducing
the image’s noise. Small changes in pixel values from the
CMOS image sensor are experienced between frames. If
the frames were sent to the output exactly as received, the
viewer would see a flickering effect on the image, which
is not desirable. Thus, the mean operation is used and allows
the flickering effect to fade away. On the other hand, if the
image context is changed, leading to a higher variation in
pixel values for the following frame, the system should pass
to the output, allowing the viewer to be aware of such context
changes. For this reason, a threshold value is used to detect
context changes.

In order to save the FPGA’s memory resources instead of
calculating the mean between the pixels of the last received
frames,19 an infinite impulse response-based method is used
by applying Eq. (1), in which only one frame and one line
(the current line being received) need to be stored in memory.
A weight of 1/16 was used for the incoming frame to ease
the FPGA implementation process. After a reset, the first
received frame is stored as the current mean since it reduces
the time needed for reaching the mean value. After that, for
each new pixel received, the new mean [Eq. (1)] is computed
by using the weight, the current mean (CurrentMean), and
the current pixel value (CurrentPixVal), and giving higher
weight to the current stored mean

EQ-TARGET;temp:intralink-;e001;326;316NewMean ¼ CurrentPixValþ CurrentMean · 15
16

: (1)

On the FPGA, Eq. (1) is implemented using a dual-port
RAM, an adder, an IP block that performs subtraction,
and a logical shifter (Fig. 6). When a pixel arrives, its cor-
responding current mean address for the RAM is generated
by the address generator. According to this address, the
RAM delivers the value of the current mean and logically
shifts left. After shifting the CurrentMean four binary posi-
tions to the left (product by 16) and subtracting the result of
this operation by CurrentMean (resulting in a product by 15),
the value is added to the current pixel value and then shifted
right (which results in a division by 16).

Moreover, this averaging of frames can create a dragging
effect in the video. If a fast moving object appears in the
scene, a tail of the moving object can be seen. To reduce
this effect, a threshold is used. However, a static threshold
is not enough for pixel ranges from 0 to 1023. It should
be adaptive and proportional to the current pixel value
being received. In the literature, most of the adaptive thresh-
old is used for changes in videos,20 object detection, and

Table 1 Unique parameters controlled by the viewer.

Name of the algorithms
Unique parameters

controlled by the viewer

Frame mean Initial threshold, threshold offset

Black mask Create black mask

White mask Create white mask

Bad pixels removal Threshold

Precolor gain adjustment Gain for R, B, and two G

Color reconstruction No unique parameters

Color adjustment matrix
2
4 R R R G R B
GR GG GB
BR BG BB

3
5

Gamma correction Gamma value

Adjust brightness Gain for R, G, B

Journal of Electronic Imaging 013005-4 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

segmentation.21 Due to the simplicity of our problem com-
pared to object detection a simpler method is chosen by
experiment. It was verified that an adaptive threshold
(Thad) calculated based on the linear equation leads to a sig-
nificant decrease of the referred dragging effect in the video.
In [Eq. (2)], an initial threshold (Thini) value is used (as input
to the block), which should be a power of 2 in order to make
the implementation easier, and has a value of 32 in the
current implemented version. A threshold offset (Thoff)
which is chosen by user is also summed in order to have

a high enough threshold when very low pixel values are
being received

EQ-TARGET;temp:intralink-;e002;326;149Thad ¼ Thini ×
�
CurrentPixVal

1024

�
þ Thoff : (2)

The adaptive threshold is created on the FPGA by multiply-
ing the initial threshold with the current pixel value, and then
dividing it by 1024 (shifting it by 10 bits). Then the result is
added to the threshold offset (Fig. 6). The choice of the

Fig. 5 Flowchart of image-processing pipeline for endoscopy.

Fig. 6 Block diagram of frames mean algorithm.

Journal of Electronic Imaging 013005-5 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

output pixel between a new pixel and a new mean is done by
using a multiplexer. The multiplexer decision is made by
comparing the threshold with the difference of the current
mean and current pixel.

A fixed pattern picture template is used for testing the
frame mean algorithm (Fig. 7). The difference between
frames is created by adding random numbers to the template.
However, it is ensured that the random number is less than
the adaptive threshold (Thad) [Eq. (2)] so that the effective-
ness of the frame mean can be evaluated. The algorithm is
run on the FPGA with the pattern and video recorded and
evaluated. From the analysis, it can be seen (Fig. 8) that
the frames mean algorithm has been successfully applied
and is able to reduce the noise or instability from one
frame to the next. If there is no difference between one frame
and the next (after frame 55 in Fig. 8), the algorithm has no
effect.

3.2 Black and White Masks
The mask blocks have the main purpose of removing FPN.
There are two different kinds of masks applied here; one is a
black mask and another is a white mask. The black mask has
the pixel value in black and is created in black conditions
(absence of light). It allows for the reduction of the dark sig-
nal nonuniformity. The white masks are used to reduce the
photo response nonuniformity (PRNU) by applying an indi-
vidual gain to each pixel to compensate for nonuniformity in
the individual photo transistors. The implementation of these
masks is described as follows.

3.2.1 Black mask

For each pixel received (Pixin), the respective black mask
value (BPix) is subtracted from the current pixel value [see
Eq. (3)]. Attention is paid to underflow. (In case the subtrac-
tion yields a negative value, 0 is used.) Because of the ran-
domness of the nature of the noise, all pixel values less than
or equal to three are clamped to a zero digital number (DN)
to reduce noise. This value is purely experimental and it may
differ from sensor to sensor

EQ-TARGET;temp:intralink-;e003;63;114Pixb ¼
�
Pixin − BPix; if 3 < Pixb ≤ 1024

0; other case
: (3)

There are three main components in the black mask algo-
rithms which are subtraction, address generator, and a dual-
port RAM (Fig. 9) The address generator generates the
proper address for the corresponding arriving pixels. Accord-
ing to the generated address, the mask is subtracted from the
pixel to produce the output pixels. The address generator is
also used to generate the black mask. It is done by setting the
write enable signal high and at the same time covering the
sensor so that it is in complete darkness. To reduce the tem-
poral noise, frames mean is quite important, otherwise, the
temporal noise is converted to the FPN which is even more
visible. Due to the placement of the black mask on the
image-processing pipeline (after the frames mean), no extra
component is needed. The user only has to enable the frames
mean algorithm before creating the black mask.

After applying the black mask, the histogram is shifted to
the left and aligned with zero which indicates the successful
implementation of the algorithm (Fig. 10).

3.2.2 White mask

PRNU is reduced by implementing the white mask, which is
done by multiplying the gain of the respective pixel (WPix)
with its own value (Pixin) [see Eq. (4)]. In this component,
attention is paid to overflow. (If the multiplication result
exceeds 1024, the upper limit is used.) The masks’ algorithm
uses IP cores (a multiplier and a dual-port RAM)
EQ-TARGET;temp:intralink-;e004;326;219

Pixw ¼

8><
>:

Pixin ×WPix; if 0 ≤ Pixw ≤ 1024

1024; if Pixw ≥ 1024

0; other cases

: (4)

From Fig. 11, it is clear that the implementation of the white
mask on the FPGA is almost the same as the black mask. The
difference is that instead of having a subtraction at the end, it
has a divider to implement Eq. (4). For the same reason as the
black mask, when creating the white mask, it is advisable to
enable frame mean and black mask algorithms. The imple-
mented white mask subsystem needs a homogenous light to
create the white mask. Figure 12 shows that most of the

Fig. 7 Basic template of test pattern for testing frame mean algorithm.

Fig. 8 MAE between frames generated using a slightly different test
pattern with and without a Frames mean algorithm.

Journal of Electronic Imaging 013005-6 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

pixels are shifted to the 255 value after applying the white
mask which is the maximum of the 24 bits RGB system. In
this figure, the blue color represents the number of pixels
before applying the white mask and the red color represents
the number of pixels after applying the white mask.

3.3 Bad Pixel Removal
The bad pixel removal block has the main purpose of remov-
ing defective pixels that might occur due to physical faults.
For instance, using this block, the pixel value can be
changed. If its value is too different from its neighbor’s
value, it is assumed to be a defective pixel. Neighbors are
not necessarily the adjacent pixels, but those immediately
before and after the pixels, both horizontally and vertically,
in an RGB Bayer pattern [as seen in Fig. 2(b)]. In order to
decide whether a pixel value is defective, a threshold level
is used.

Regarding the algorithm used for each pixel received,
the computation is made using the subset composed of the
available neighboring pixels along with the current pixel
being analyzed. This subset can be comprised of 3 (for pixels
in corners), 4 (for pixels close to the frame limits), or 5 pixels

Fig. 9 Block diagram of the black mask algorithm.

Fig. 10 Histogram with and without applying the black mask in dark
conditions.

Fig. 11 Block diagram of the white mask algorithm.

Journal of Electronic Imaging 013005-7 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

(for pixels in the middle). For this reason, the results start
being sent to the output after three lines have been received.
However, in the FPGA implementation, a memory contain-
ing five complete lines is used for the cases when central
pixels are being computed. The median value is obtained
for each subset by doing sorting, as well as an arithmetic
mean in the case of a subset with 4 pixels. The absolute
value of the subtraction between the current pixel value and
the median value is obtained and compared with the thresh-
old limit. In case it is higher than the threshold, the current
pixel gets the median value computed instead of holding its
current value, meaning the pixel was detected as defective.

Regarding the sorting method used, and based on the
research of May and Urbanek,22 several comparators and
adders are used to determine the position of each element in
a subset of pixels, after which sorting can take place. In terms
of resources, this algorithm uses one IP core (a dual-port
RAM module with 1250 positions of 10 bits for storing
five lines), several comparators, a block that provides as
output the number of digital ones (“1” bit) contained in a

Fig. 13 Block diagram of bad pixel removal algorithm.

Fig. 14 Example of bad pixel removal algorithm. (a) Applied pattern. (b) Received picture.

Fig. 12 Histogram with and without applying the white mask in a
homogenous lighting condition.

Journal of Electronic Imaging 013005-8 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

standard logic vector input. Another block that outputs the
number of pixels available for performing sorting and the
median for the current pixel being analyzed. Third block
that receives the current pixel availability, and returns an
array of 5 pixels (filled with 0 or 1023 at the extremes when
needed). Additional block that receives all the pixels to be
sorted, and the corresponding calculated new position,
returning the pixels already sorted. Last block that receives
the sorted pixels and computes the median. The overall block
diagram implemented is shown in Fig. 13.

The results of using the algorithm can be seen in Fig. 14.
A fixed pattern is applied for the test. The algorithm is able to
remove the pattern without destroying the other content in
the picture.

3.4 Precolor Gain Adjustment
Color correction is needed to show the true color. Though the
precolor gain adjustment algorithm is not enough, it can sim-
plify the overall color correction process by correcting each
channel separately to get the correct combination between
all channels.23

This adjustment is done by applying a different gain to
each color of the Bayer pattern [Fig. 2(b)]. Since the filters
can have four different colors, the user may specify four
coefficients. Its block diagram is shown in Fig. 15.

The input data start being multiplied by the coefficients
using multiplier IP-blocks, and the output value is chosen
on a multiplexer based on the column and the row to
which the current pixel belongs. The coefficients can take
values between 0.5 and 2.0. Since they are real numbers, and
real numbers are not permitted on the FPGA, the values at the
input are those coefficients multiplied by 1024, i.e., they are
shifted left by 10 bits, so they are represented by 12 bits
within the block. After the multiplication, the values are then
shifted right by 10 bits. The output values are truncated to
the maximum value of 1024.

3.5 Color Reconstruction
The Bayer pattern has missing color samples in the color
space. By using bilinear interpolation, the technique color
reconstruction module reconstructs the full color image.

The color reconstruction module calculates the missing
color values by computing the average of the neighboring
pixels.24 There are four general cases indicated by color fil-
ters. Because of the Bayer pattern, there are two different
color filters for the green shown in Fig. 16.

For instance, consider the pixel RPOS at position POS on
the red filter in Fig. 16(a). In this position, the red filter com-
ponent of the pixel is already available, but it is necessary
to estimate the green and blue components. The missing
components can be estimated by applying the following
equation:24,25

Fig. 15 Block diagram of the precolor gain adjustment algorithm.

Fig. 16 Color filters and pixel positions for Bayer pattern used in color
reconstruction algorithm: (a) red filter, (b) green filter 1, (c) green filter
2, and (d) blue filter.

Journal of Electronic Imaging 013005-9 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

EQ-TARGET;temp:intralink-;e007;63;748ðRR
POS;G

R
POS;B

R
POSÞ¼�

RPOS;
GP5þGP2þGPOSAþGPOSB

4
;
BP6þBP4þBP3þBP1

4

�
;

(5)

where POS is the current pixel position to be calculated,
POSA¼POS−1, POSB¼POSþ1, P1 ¼ POSþ 250þ 1,
P2¼POSþ250, P3¼POSþ250−1, P4¼POS−250þ1,
P5 ¼ POS − 250, P6 ¼ POS − 250 − 1. Equations (6)–(8)
should be applied when the known component is green filter

1, green filter 2, or the blue filter, respectively,

EQ-TARGET;temp:intralink-;e006;326;741ðRG1
POS;G

G1
POS; B

G1
POSÞ ¼

�
RPOSA þRPOSB

2
;GPOS;

BP5 þBP2

2

�
;

(6)

EQ-TARGET;temp:intralink-;e007;326;684ðRG2
POS;G

G2
POS; B

G2
POSÞ ¼

�
RP5 þRP2

2
;GPOS;

BPOSA þBPOSB

2

�
;

(7)

Fig. 17 Block diagram of the color reconstruction algorithm.

Journal of Electronic Imaging 013005-10 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

EQ-TARGET;temp:intralink-;e008;63;740ðRB
POS; G

B
POS; B

B
POSÞ ¼

�
RP6 þ RP4 þ RP3 þ RP1

4
;
GP5 þ GP2 þ GPOSA þ GPOSB

4
; BPOS

�
: (8)

The implementation of this module is illustrated in Fig. 17. To
compute all three components of a pixel, the values from three
lines are necessary, except for the first and the last lines of a
frame, which only require the values from two lines. In other
words, the system uses a first in first out (FIFO) to allocate
memory for three lines. The components of the frame’s first
pixel start being computed when the FIFO already contains
two lines. Then the FIFO is shifted at each clock cycle to accom-
modate incoming pixels. At the border of the pixel matrix
(frame) Eqs. (5)–(8) cannot be applied, as they would consider
pixels outside the matrix. Therefore, for the outmost row’s the

equations are adjusted to use only those pixels actually present
in the matrix. There are multiplexers at the end where the output
is decided according to the position of the current pixel.

3.6 Color Adjustment Matrix
In this work, image data are acquired by a CMOS image
sensor. A high color fidelity is required especially in the
medical area because some medical diagnostics depend on
color information. To render neutral colors correctly, a color
adjustment algorithm is required. That is why the image data

Fig. 18 Color adjustment matrix block diagram.

Journal of Electronic Imaging 013005-11 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

are transformed to new values so that it is appropriate for
color reproduction or display, matching the natural color.
In this module, the RGB components of each pixel are multi-
plied by a 3 × 3matrix26 as shown in the following equation:
EQ-TARGET;temp:intralink-;e009;63;708

½Rnew Gnew Bnew � ¼ ½Rold Gold Bold �×

2
64
RR RG RB

GR GG GB

BR BG BB

3
75:

(9)

The goal of this matrix is to saturate the images, changing
the pixel’s RGB values to obtain better color images. To
allow the brightness to stay the same, the condition

EQ-TARGET;temp:intralink-;sec3.6;63;595

8<
:

RR þ GR þ BR ¼ 1

RG þ GG þ BG ¼ 1

RB þ GB þ BB ¼ 1

should be respected. The gains have a range from −255 to
þ255. The implementation’s block diagram is shown in
Fig. 18. The matrix coefficients are received after a multipli-
cation by 1024, since real numbers are not allowed on the
FPGA. These coefficients are signed and have 19 bits. After
computing the multiplications and the sums, the resulting
values are divided by 1024 in order to obtain the actual
values, and then they are limited to a range from 0 to 1023.
By choosing the value of the matrix coefficient, users can
control the color information according to their preference.

3.7 Gamma Correction
The digital sensor and display are almost linear in nature,
however, because of human nonlinear vision brightness,
correction is needed to faithfully reproduce brightness.27

The solution to this problem is gamma-corrected pixels for
every kind of display device.28 This nonlinear function has

an output which is compatible with human vision. Because
of the use of the exponential form, it is impossible to directly
implement the algorithm on the FPGA,29 so the main method
of reproducing the function faithfully is to use data points
stored in the memory. The output of the function is saved
in read-only memory (ROM) and according to the input pix-
els, the resulting pixels are output. However, if the system
has a wide range of gamma values such as this implementa-
tion, the memory use is large. The alternative solution to
this problem is a piecewise linear approach30 (see Fig. 19).
In this method, the nonlinear function is divided into 10
linear functions and then it is computed.

The design presented in Fig. 20 has a gamma range from
0 to 4 with 0.1 resolutions, thus a total of 32 values of gamma
can be chosen. The input and output of the gamma block is
composed of 10 bits. The coefficients (Cs

1x; C
s
2x) for all

Fig. 19 The comparison between mathematical gamma and piece-
wise linear gamma in FPGA for the gamma value of 4.

Fig. 20 Gamma block diagram. Reconstructed diagram from Ref. 27.

Journal of Electronic Imaging 013005-12 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

gamma values are saved in an ROM. When a gamma value
[gamma in Eq (10)] is chosen by the user, the block receives
the value using the wishbone bus. According to the gamma
value, all the coefficients are passed to the multiplexer. The
main purpose of the multiplexer is to select proper coeffi-
cients for each pixel (pixel_in) according to each slice(s).
In the next step, the output pixel is calculated using Eq. (11)

EQ-TARGET;temp:intralink-;e010;63;675pixel output ¼ input pixel
1

gamma; (10)

EQ-TARGET;temp:intralink-;e011;63;640pixel out ¼ Cs
1x × pixel inþ Cs

2x: (11)

This piecewise linear implementation has the average
mean absolute error (MAE) of 2.1747.30

3.8 Adjust Brightness
In this module, the brightness of the image can be increased
by the application of a gain, which is multiplied by all the
image pixels.23 Since real numbers are not allowed on the
FPGA, the gain value is received after a multiplication by
1024, and it is represented using 12 bits. The block diagram
can be seen in Fig. 21.

After multiplication, the values are truncated to 10 bit maxi-
mum values (1024), and 2 bit right shifts, to convert to an
8-bit value. The output values are constituted by the 8 LSB.

4 Quality Evaluation and Comparison
After the implementation of the algorithms in hardware, the
quality of the image was evaluated using both numerical
approaches and user evaluation, as will be shown in the

following sections. Four different scenes were chosen as well
as four different conditions (i.e., combination between the
parameters of algorithms is used) for both evaluations.
The four scenes have four different images such as:
Fig. 22(a) shows a 3-D shape, Fig. 22(b) shows a color pat-
tern, Fig. 22(c) shows color bars, and Fig. 22(d) shows a
black and white picture. The main purpose of the developed
algorithms is to remove noise and bad pixels, and reconstruct
and correct the colors. It makes the colorful images suitable
for the evaluation. The gray scale image has the same impor-
tance since the gray tones must also be properly recon-
structed. Each scene was captured using each one of four
different conditions, and using each one of the three possible
image-processing pipelines, which means that 64 images
were captured. Each scene, processed by the FPGA algo-
rithms with default conditions, can be seen in Fig. 22.

The conditions applied are described in Table 2, in which
the fields in “parameters” column are described in the pre-
vious sections (with respect to each algorithm). Instead of
just one setting of these user controllable parameters for pre-
color gain adjustment, color adjustment matrix, gamma, and
adjust brightness, four different settings were chosen to
increase the versatility of the experiment. The default con-
dition is saved in the viewer so every time the user starts
the camera, it is in that condition. The other three conditions
are varied for test purposes.

4.1 Numerical Comparison of Images
An error is calculated using MAE using Eq. (12), in which
Pix_F indicates the FPGA generated pixels, Pix_C indicates
the compared pixels, i; j are the pixel positions, and Ch is
the color channel. The result is shown in Fig. 23.

Fig. 21 Block diagram of the adjust brightness algorithm.

Journal of Electronic Imaging 013005-13 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

EQ-TARGET;temp:intralink-;e012;63;752MAE¼ 1

3�250�250
X

Ch¼R;G;B

Xi¼250;j¼250

i¼1;j¼1

ðPix FCh
i;j −Pix CCh

i;j Þ:

(12)

It can be stated that in general, the images are quite differ-
ent. For condition default, condition 1 and condition 2 FPGA
versus Awaiba have fewer differences compared to OpenCV
with the exception of scene 1 condition 1, and scene 4 con-
dition 1. In the case of condition 4 in all scenes, FPGAversus
OpenCV has fewer errors than FPGA versus Awaiba. More
information can be seen in Fig. 23.

Nevertheless, the images do not need to be the same. The
only requirement is that the FPGA processed image has good
quality from the user’s point of view.

4.2 User Evaluation of Images
Although the MAE shows the difference between the
images, it does not directly reflect the quality of the image.
So a qualitative approach was followed by asking users to
evaluate the images. A subjective image quality evaluation
was done through the user’s feedback to understand how
the image quality was changed by the image-processing
pipeline implemented on the FPGA, in comparison to
Awaiba and OpenCV18 (which is considered a reference
for open software) image-processing pipelines that are
implemented in software and benefit from virtual infinite
resources on their PC implementation. The method used
to conduct this experiment is called Forced Choice31 and
the Psychopy32 software was used to make the presentation
available to the users. In this presentation, two kinds of
comparison were done: the images adjusted on the FPGA
versus the ones adjusted with Awaiba’s image-processing
pipeline; and the images adjusted on the FPGA versus the
ones adjusted with OpenCV’s image-processing pipeline. A
pair of images was presented each time, and the observer

Fig. 23 MAE for four different scenes with four different conditions.

Table 2 Conditions description.

Algorithm Parameters
Default
condition

Conditions
1

Conditions
2

Conditions
3

Precolor
gain
adjustment

Red 1 1.33 1 1

Green 1 1 1 1 1

Green 2 1 1 1.1 1

Blue 1 1 1 1

Color
adjustment
matrix

RR 1.2 0.7 1.15 1

GR −0.1 0.15 −0.07 0

BR −0.1 0.15 −0.07 0

RG −0.1 −0.05 −0.17 0

GG 1.2 1.1 1.35 1

BG −0.1 −0.05 −0.17 0

RB −0.1 −0.05 −0.05 0

GB −0.1 −0.05 −0.05 0

BB 1.2 1.1 1.1 1

Gamma Value 1.2 1.5 1.0 1.2

Adjust
brightness

Gain 1.2 1.68 1.48 1.2

Fig. 22 Some images used for the user evaluation.

Journal of Electronic Imaging 013005-14 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

was asked to choose which one had the higher quality
(see Fig. 24).

This experiment was done with 73 observers (45 males
and 28 females), with an age range of 18 to 59. Each
observer compared 32 pairs of images twice. The results
of this experiment are summarized in Fig. 25.

Considering the user decision (the algorithm with more
votes), in 81.25% of the comparisons between FPGA’s
image-processing pipeline and Awaiba’s image-processing
pipeline, the image processed with FPGA has more votes.
When compared with the OpenCV image-processing pipe-
line, this percentage is 87.50% (Fig. 25). Considering the
total number of votes in each option, for comparison between
FPGA and Awaiba, the FPGA obtained 64.64% of the votes;

for the comparison between FPGA and OpenCV, the FPGA
obtained 74.83% of the votes (Fig. 25).

Altogether, this means that according to the users, the
quality of the images processed by the FPGA image-process-
ing pipeline is better or equal to those which are processed by
Awaiba’s and OpenCV’s image-processing pipelines.

4.3 Comparison between Different Implementations
The pictures were captured on a computer and shown as
a live video with “Max CPU frames” setting in the Awaiba
viewer. The computer used has an AMDFX6300 six core
processor, 16GB RAM and AMD Radeon HD 5450 Graphic
Card. For the processing on the computer, OpenCV took
32 ms and Awaiba algorithms took 37 ms to process in the
debug mode. The viewer first grabs the frame and then starts
the process so the total delay will be one frame initial delay
plus the processing delay. At the end, with computer process
algorithms 31 fps for OpenCV and 27 fps for Awaiba algo-
rithms can be achieved.

On the other hand, the FPGA processed algorithms,
which are the same as Awaiba algorithms processed on
FPGA, can reach 60 fps, almost twice the speed when com-
pared to both computer-based algorithms.

Considering the resource use, Table 3 shows that the
FPGA implemented algorithms use 5% FFs and 13% LUTs
in the Spartan 6 FPGA. The most significant resource used
by the algorithms is 108 BRAM16, which is 40% of the
total in this FPGA. The next most significant resource
use is 16% of DSP48A1s. So from the resources used
by the system, it is clear that two cameras can be used

Fig. 25 The votes of user evaluation of images.

Fig. 24 Experiment user interface.

Journal of Electronic Imaging 013005-15 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

on a Spartan 6 FPGA. Using two cameras in the system, the
total delay of each camera process will not increase because
of the parallel processing nature of the FPGA implementa-
tion, which is not true for computers. However, the use of
two cameras is in the scope of future research for 3-D image
processing.

4.4 Comparison between Different Design
In the proposed implementation, a whole image-processing
pipeline is done in an FPGA. In the other implementations
presented in Table 4, collected from the literature, only
compression and transmission are done. Due to FPGA
implementation, a higher frame rate is achievable. The
achievement in frame rate is doubled (60fps) compared to
its nearest competitor which has 30fps 6,8 and thirty time
faster than Ref. 9 which has only 2fps. In addition, it can
be seen that the physical size of the sensor is the smallest
among the ones used, but with a modest pixel number which
gives an extra advantage in endoscopic methods where size
does matters.

Considering the technology of these implementations, it
can be seen that the recent trend is ASIC 180 nm,5,6 FPGA

90 nm,8,9 and 65 nm,7 which are power efficient compared to
processor-based solutions.

5 Conclusion
The work presented here is capable of implementing a full
processing pipeline on an FPGA. From the user experience
point of view, it produces better pictures than the software
counterpart and the OpenCV, which is a reference for
image processing. However, in the case of numerical com-
parisons of images, there are some differences between
Awaiba and FPGA generated pictures. These differences
were mainly generated because of the floating point to the
fixed point conversion and some of the assumptions made
for implementing algorithms such as gamma and frame
mean.

The actual maximum speed of the algorithms could not be
calculated because of the frequency range of the sensors. The
system was capable of reaching the highest possible speed of
the particular CMOS sensor. In this way, FPGA implemented
algorithms can achieve twice the frame rate compared to the
computer implemented algorithms.

The resources used by the algorithms indicate that in
Spartan-6 FPGA, it is possible to use two sensors. Stereo
type cameras would allow implementation of 3-D view,
a project that will be covered in future research.

Acknowledgments
Acknowledgments to the Portuguese Foundation for Science
and Technology for their support through Projeto Estratégico
LA 9—UID/EEA/50009/2013. Also acknowledged is the
Funding Program +Conhecimento II: Incentive System to
Research and Technological Development and Innovation
of Madeira Region II, through the project Vision 3D-
MADFDR-01-0190-FEDER-000014. Acknowledgment to
ARDITI—Agência Regional para o Desenvolvimento e
Tecnologia under the scope of the Project M1420-09-
5369-000001—PhD Studentship.

Table 3 Resources used by the FPGA implementation.

Resource Amount used Percentage of total resources (%)

FFs 10,781 5

LUTs 12,396 13

BRAM16 108 40

BRAM8 2 1

BUFGs 2 12

DSP48A1s 29 16

Table 4 Comparison between different design implementations.

System Frame rate (fps) Sensor size Pixels Clock (MHz) Technology

Ref. 5 8 3.0 mm × 4.2 mm 320 × 288 40 ASIC 180 nm

Ref. 6 30 Not mentioned VGA 20 to 24 ASIC 180 nm

Ref. 7 24 2.5 mm × 3.5 mm 29,33 320 × 240 24 FPGA 65 nm

Ref. 7 12 2.5 mm × 3.5 mm 29,33 320 × 240 12 FPGA 65 nm

Ref. 8 30 1.1 mm × 1.4 mm 640 × 480 24 FPGA 90 nm

Ref. 9 2 Not mentioned 480 × 480 12 FPGA90 nm

Awaiba 27 1.0 mm × 1.0 mm 250 × 250 50 Computer (Awaiba algorithms)

OpenCV 31 1.0 mm × 1.0 mm 250 × 250 50 Computer (OpenCV)

Proposed 60 1.0 mm × 1.0 mm 250 × 250 50 FPGA 45 nm

Journal of Electronic Imaging 013005-16 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

References

1. A. F. Peery et al., “Burden of gastrointestinal disease in the United
States: 2012 update,” Gastroenterology 143, 1179–1187 (2012).

2. D.R. Cave et al., “A multicenter randomized comparison of the endo-
capsule and the Pillcam SB,” Gastrointest. Endoscopy 68(3), 487–494
(2008).

3. M. Schoberl et al., “Non-linear dark current fixed pattern noise compen-
sation for variable frame rate moving picture cameras,” in 17th
European Signal Processing Conf., pp. 268–272 (2009).

4. I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: survey and chal-
lenges,” Found. Trends Electron. Design Automation 2, 135–253 (2008).

5. X. Xie et al., “A low-power digital IC design inside the wireless endo-
scopic capsule,” IEEE J. Solid-State Circuits 41(11), 2390–2400 (2006).

6. X. Chen et al., “A wireless capsule endoscope system with low-power
controlling and processing ASIC,” IEEE Trans. Biomed. Circuits Syst.
3(1), 11–22 (2009).

7. P. Turcza and M. Duplaga, “Low power FPGA-based image processing
core for wireless capsule endoscopy,” Sensors Actuators A 172, 552–
560 (2011).

8. D. Covi et. al, “Miniaturized digital camera system for disposable
endoscopic applications,” Sens. Actuators A 162, 291–296 (2010).

9. Y. Gu et. al., “A new system design of the multi-view micro-ball endos-
copy system,” in Annual Int. Conf. of the IEEE Engineering in Medicine
and Biology, Buenos Aires, pp. 6409–6412 (2010).

10. Y.-K. Lai and S.-M. Lee, “Dynamic gamma-correction algorithm for
improving color LCD systems,” in IEEE Int. Conf. on Consumer
Electronics, pp. 811–812 (2011).

11. H. S. Malvar, L.-W. He, and R. Cutler, “High-quality linear interpola-
tion for demosaicing of Bayer-patterned color images,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ’04),
Vol. 3, p. iii–485 (2004).

12. M. Qasaimeh, A. Sagahyroon, and T. Shanableh, “FPGA-based parallel
hardware architecture for real-time image classification,” IEEE Trans.
Comput. Imaging 1, 56–70 (2015).

13. D. Seidner, “Improved low-cost FPGA image processor architecture
with external line memory,” in IEEE Int. Conf. on Industrial
Technology (ICIT ‘13), pp. 1128–1133 (2013).

14. “Specification NanEye 2D Web v4.4,” 2015, http://www.cmosis.com/
products/product_detail/naneye (5 Nov 2015).

15. “Product sheet NanEye area scan sensors,” 2015, http://www.cmosis.
com/products/product_detail/naneye (5 Oct 2015).

16. “EFM-02 hardware reference (Hardware Revision 1.2),” 2014, www.
cesys.com (15 July 2015).

17. “OpenCores, Wishbone B4,” 2010, https://opencores.org/cdn/
downloads/wbspec_b4.pdf (3 Dec 2016).

18. G. Bradski, “The opencv library,” Doct. Dobbs J. 25, 120–126 (2000).
19. C. Huddleston, Intelligent Sensor Design Using the Microchip dsPIC,

Newnes, USA (2006).
20. C. Su and A. Amer, “A real-time adaptive thresholding for video change

detection,” in Int. Conf. on Image Processing, Atlanta, Georgia,
pp. 157–160 (2006).

21. D. Samanta and G. Sanyal, “Novel approach of adaptive thresholding
technique for edge detection in videos,” Proc. Eng. 30, 283–288 (2012).

22. S. May and P. Urbanek, “Sorting data in two clock cycles,” 2005,
EE Times-India, http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_
2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD (3 December
2016).

23. S. Wright, Compositing Visual Effects: ESSENTIALS for the Aspiring
Artist, Taylor & Francis, United Kingdom (2011).

24. K. S. Rani and W. J. Hans, “FPGA implementation of bilinear
interpolation algorithm for CFA demosaicing,” in Int. Conf. on
Communications and Signal Processing, pp. 857–863 (2013).

25. R. Ramanath et al., “Demosaicking methods for Bayer color arrays,”
J. Electron. Imaging 11, 306–315 (2002).

26. “Motorola semiconductor,” Application Note AN1904/D, http://www.
nxp.com/assets/documents/data/en/application-notes/AN1904.pdf (14
Feb 2016).

27. B. Walker, “Video gamma correction,”U.S. Patents 8743234 B1 (2014).
28. P.-M. Lee and H.-Y. Chen, “Adjustable gamma correction circuit for

TFT LCD,” in IEEE Int. Symp. on Circuits and Systems (ISCAS ’05),
pp. 780–783 (2005).

29. W. Jang et al., “Implementation of the gamma (γ) line system similar to
non-linear gamma curve with 2bit error (LSB),” in IEEE Asia Pacific
Conf. on Circuits and Systems (APCCAS ‘06), pp. 283–286 (2006).

30. S. S. Mostafa et. al., “FPGA implementation of gamma correction using
a piecewise linear approach for a small size endoscopic camera,” in
Proc. Image Sensors and Imaging Systems, Vol. 12, pp. 1–6 (2016).

31. R. K. Mantiuk, A. Tomaszewska, and R. Mantiuk, “Comparison of four
subjective methods for image quality assessment,” Comput. Graphics
Forum 31(8), 2478–2491 (2012).

32. J. W. Peirce, “PsychoPy—psychophysics software in Python,”
J. Neurosci. Methods 162, 8–13 (2007).

33. M. Vatteroni et. al, “Smart optical CMOS sensor for endoluminal appli-
cations,” Sensors Actuators A 162, 297–303 (2010).

Sheikh Shanawaz Mostafa received his BSc Engg degree in elec-
tronics and communication engineering from Khulna University in
2010 and his MSc degree in biomedical engineering from Khulna
University of Engineering and Technology (KUET), in 2012. He is cur-
rently pursuing his PhD in networked interactive cyber physical sys-
tems at the Instituto Superior Técnico in a partnership with Carnegie
Mellon University, Miti, and LARSyS. His research interest includes
the development of hardware for biological/medical treatment/diagno-
sis techniques.

L. Natércia Sousa received her master’s degree in telecommunica-
tions and energy networks engineering from the University of Madeira
in 2015. For a year, she worked as a research assistant on a project at
Madeira Interactive Technologies Institute (MITI). Then she joined
Awaiba Lda Company, where she is currently working as a digital
engineer focused on FPGA firmware development and image sensor
test and characterization.

Nuno Fábio Ferreira received his diploma degree in networks and
telecommunications engineering from the University of Madeira
(UMa) in 2005, and his doctoral degree in electrotechnics engineering
from the University of Aveiro. He is teaching at the UMa. He has inte-
grated a team in an image processing R&D project, in collaboration
with Awaiba Company. He currently works as a research fellow in
numerical simulation of gas discharges with the Physics Group at the
UMa.

Ricardo M. Sousa received his master’s degree in telecommunica-
tions and energy networks engineering from the University of Madeira
in 2014. In 2015, he won an IS&T/SPIE Electronic Imaging 2015 best
student paper award. He currently works at Awaiba Lda, where he is
an electronic engineer specialized in FPGA firmware development
and image sensor test and characterization. He is a member of SPIE.

Joao Santos received his degree in software engineering in 2009
and his master’s degree in software engineering in 2010 from the
University of Madeira. He is working as a computer programmer in
Awaiba, Funchal, Portugal. His work is focused on drivers develop-
ment, design GUI, and image processing algorithms.

Martin Wäny graduated in physical electronics from IMT Neuchâtel in
1997. He worked on CMOS image sensors at IMEC Belgium in 1998.
In 1999 he joined CSEM to work on high-dynamic range pixels and
invented the LINLOG™ Technology, which he spun off as cofounder
to Photonfocus AG in 2001. In 2004 he founded AWAIBA Lda
a design company for specialized image sensors, which in 2015
became part of AMS. He currently is member of the AMS technology
office and directs the marketing of micro camera modules.

F. Morgado-Dias received his MSc degree from the University of
Joseph Fourier, Grenoble, in 1995, and his PhD from the University
of Aveiro in 2005. He was a lecturer at the Technical University of
Setúbal and is currently an assistant professor at the University of
Madeira and a researcher at Madeira Interactive Technologies Insti-
tute. He is currently the vice president of the Portuguese Control
Association. His research interests include renewable energy, artifi-
cial neural networks, and FPGA implementations.

Journal of Electronic Imaging 013005-17 Jan∕Feb 2017 • Vol. 26(1)

Mostafa et al.: Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

Downloaded From: http://electronicimaging.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/electim/935790/ on 02/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1053/j.gastro.2012.08.002
http://dx.doi.org/10.1016/j.gie.2007.12.037
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1109/JSSC.2006.882884
http://dx.doi.org/10.1109/TBCAS.2008.2006493
http://dx.doi.org/10.1016/j.sna.2011.09.026
http://dx.doi.org/10.1016/j.sna.2010.03.031
http://dx.doi.org/10.1109/IEMBS.2010.5627312
http://dx.doi.org/10.1109/IEMBS.2010.5627312
http://dx.doi.org/10.1109/ICCE.2011.5722878
http://dx.doi.org/10.1109/ICCE.2011.5722878
http://dx.doi.org/10.1109/ICASSP.2004.1326587
http://dx.doi.org/10.1109/ICASSP.2004.1326587
http://dx.doi.org/10.1109/TCI.2015.2424077
http://dx.doi.org/10.1109/TCI.2015.2424077
http://dx.doi.org/10.1109/ICIT.2013.6505831
http://dx.doi.org/10.1109/ICIT.2013.6505831
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
http://www.cmosis.com/products/product_detail/naneye
www.cesys.com
www.cesys.com
www.cesys.com
www.cesys.com
https://opencores.org/cdn/downloads/wbspec_b4.pdf
https://opencores.org/cdn/downloads/wbspec_b4.pdf
https://opencores.org/cdn/downloads/wbspec_b4.pdf
https://opencores.org/cdn/downloads/wbspec_b4.pdf
http://dx.doi.org/10.1109/ICIP.2006.312373
http://dx.doi.org/10.1016/j.proeng.2012.01.862
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://m.eetindia.co.in/ARTICLES/2005FEB/EEIOL_2005FEB01_EMS_TA.pdf?SOURCES=DOWNLOAD
http://dx.doi.org/10.1109/iccsp.2013.6577178
http://dx.doi.org/10.1109/iccsp.2013.6577178
http://dx.doi.org/10.1117/1.1484495
http://www.nxp.com/assets/documents/data/en/application-notes/AN1904.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN1904.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN1904.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN1904.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN1904.pdf
http://dx.doi.org/10.1109/ISCAS.2005.1464704
http://dx.doi.org/10.1109/APCCAS.2006.342406
http://dx.doi.org/10.1109/APCCAS.2006.342406
http://dx.doi.org/10.1111/j.1467-8659.2012.03188.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03188.x
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.1016/j.sna.2010.03.034

