92 research outputs found
Pathogen burden and cortisol profiles over the day
Hypothalamic-pituitary-adrenocortical (HPA) regulation in adults is influenced by early psychosocial adversity, but the role of infectious disease history is poorly understood. We studied the association between cumulative pathogen burden and cortisol profile over the day in a sample of 317 healthy men and women aged 51-72 years. Cumulative pathogen burden was defined as positive serostatus for Chlamydia pneumoniae, cytomegalovirus (CMV) and herpes simplex virus 1 (HSV-1). Salivary cortisol was sampled repeatedly over the day. The cortisol slope was defined as the decrease across the day and evening. Age, gender, grade of employment, body mass index, smoking status, self-rated health, cardiovascular medication, depressed mood and time of waking were included as covariates. The pathogen burden averaged 1.76 (S.D. = 0.92). The cortisol slope was inversely associated with pathogen burden after controlling for covariates. When individual pathogens were studied, only CMV was associated with flatter cortisol rhythms in isolation. We conclude that pathogen burden is independently associated with flatter cortisol slopes over the day, and may contribute to disturbed neuroendocrine regulation
A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections
In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates
Differential Regulation of Circulating Levels of Molecular Chaperones in Patients Undergoing Treatment for Periodontal Disease
British Heart Foundation (grant PG/03/029
Tickborne Relapsing Fever Diagnosis Obscured by Malaria, Togo
Relapsing fever caused by Borrelia crocidurae and B. duttonii in Togo may be misdiagnosed
Possibilities for Relapsing Fever Reemergence
Increasing globalization may pave the way for reemergence of relapsing fever
Hsp60 Is Actively Secreted by Human Tumor Cells
Background: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. Methodology/Principal Findings: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. Conclusions/Significance: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likel
Evidence of Transfer by Conjugation of Type IV Secretion System Genes between Bartonella Species and Rhizobium radiobacter in Amoeba
Background: Bartonella species cospeciate with mammals and live within erythrocytes. Even in these specific niches, it has been recently suggested by bioinformatic analysis of full genome sequences that Lateral Gene Transfer (LGT) may occur but this has never been demonstrated biologically. Here we describe the sequence of the B. rattaustraliani (AUST/NH4 T) circular plasmid (pNH4) that encodes the tra cluster of the Type IV secretion system (T4SS) and we eventually provide evidence that Bartonella species may conjugate and exchange this plasmid inside amoeba. Principal Findings: The T4SS of pNH4 is critical for intracellular viability of bacterial pathogens, exhibits bioinformatic evidence of LGT among bacteria living in phagocytic protists. For instance, 3 out of 4 T4SS encoding genes from pNH4 appear to be closely related to Rhizobiales, suggesting that gene exchange occurs between intracellular bacteria from mammals (bartonellae) and plants (Rhizobiales). We show that B. rattaustraliani and Rhizobium radiobacter both survived within the amoeba Acanthamoeba polyphaga and can conjugate together. Our findings further support the hypothesis that tra genes might also move into and out of bacterial communities by conjugation, which might be the primary means of genomic evolution for intracellular adaptation by cross-talk of interchangeable genes between Bartonella species and plant pathogens. Conclusions: Based on this, we speculate that amoeba favor the transfer of genes as phagocytic protists, which allows fo
Interaction of Variable Bacterial Outer Membrane Lipoproteins with Brain Endothelium
Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail.We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1.Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction
- …