12 research outputs found

    Hemispheric lateralization of white matter microstructure in children and its potential role in sensory processing dysfunction

    Get PDF
    Diffusion tensor imaging (DTI) studies have demonstrated white matter microstructural differences between the left and right hemispheres of the brain. However, the basis of these hemispheric asymmetries is not yet understood in terms of the biophysical properties of white matter microstructure, especially in children. There are reports of altered hemispheric white matter lateralization in ASD; however, this has not been studied in other related neurodevelopmental disorders such as sensory processing disorder (SPD). Firstly, we postulate that biophysical compartment modeling of diffusion MRI (dMRI), such as Neurite Orientation Dispersion and Density Imaging (NODDI), can elucidate the hemispheric microstructural asymmetries observed from DTI in children with neurodevelopmental concerns. Secondly, we hypothesize that sensory over-responsivity (SOR), a common type of SPD, will show altered hemispheric lateralization relative to children without SOR. Eighty-seven children (29 females, 58 males), ages 8–12 years, presenting at a community-based neurodevelopmental clinic were enrolled, 48 with SOR and 39 without. Participants were evaluated using the Sensory Processing 3 Dimensions (SP3D). Whole brain 3 T multi-shell multiband dMRI (b = 0, 1,000, 2,500 s/mm2) was performed. Tract Based Spatial Statistics were used to extract DTI and NODDI metrics from 20 bilateral tracts of the Johns Hopkins University White-Matter Tractography Atlas and the lateralization Index (LI) was calculated for each left–right tract pair. With DTI metrics, 12 of 20 tracts were left lateralized for fractional anisotropy and 17/20 tracts were right lateralized for axial diffusivity. These hemispheric asymmetries could be explained by NODDI metrics, including neurite density index (18/20 tracts left lateralized), orientation dispersion index (15/20 tracts left lateralized) and free water fraction (16/20 tracts lateralized). Children with SOR served as a test case of the utility of studying LI in neurodevelopmental disorders. Our data demonstrated increased lateralization in several tracts for both DTI and NODDI metrics in children with SOR, which were distinct for males versus females, when compared to children without SOR. Biophysical properties from NODDI can explain the hemispheric lateralization of white matter microstructure in children. As a patient-specific ratio, the lateralization index can eliminate scanner-related and inter-individual sources of variability and thus potentially serve as a clinically useful imaging biomarker for neurodevelopmental disorders

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Accounting for deaths in neonatal trials: is there a correct approach?

    Full text link
    [From Introduction] The Disability and Perinatal Care report published by the National Perinatal Epidemiology Unit and Oxford Regional Health Authority in 1994 emphasised that data on the neurodevelopmental outcomes of neonates requiring intensive care should be formally collected.1 Over the last 40 years, survival rates of high-risk infants have improved but these have not been matched with parallel improvements in neurodevelopmental outcomes.2–4 Consequently, the focus of neonatal care has shifted increasingly towards reducing long-term morbidity and neurodevelopmental impairment.1 2 Improved long-term neurodevelopment is now considered the ‘Holy Grail’ in neonatology.1 5 These developments have led to a change in focus of perinatal trials, which have moved away from survival as the primary outcome towards using long-term functional outcomes.2 This has raised the question of how to deal with deaths in those trials where neurodevelopmental impairment is of primary interest

    The Effect of Size and Asymmetry at Birth on Brain Injury and Neurodevelopmental Outcomes in Congenital Heart Disease.

    No full text
    Poor and asymmetric fetal growth have been associated with neonatal brain injury (BI) and worse neurodevelopmental outcomes (NDO) in the growth-restricted population due to placental insufficiency. We tested the hypothesis that postnatal markers of fetal growth (birthweight (BW), head circumference (HC), and head to body symmetry) are associated with preoperative white matter injury (WMI) and NDO in infants with single ventricle physiology (SVP) and d-transposition of great arteries (TGA). 173 term newborns (106 TGA; 67 SVP) at two sites had pre-operative brain MRI to assess for WMI and measures of microstructural brain development. NDO was assessed at 30 months with the Bayley Scale of Infant Development-II (n = 69). We tested the association between growth parameters at birth with the primary outcome of WMI on the pre-operative brain MRI. Secondary outcomes included measures of NDO. Newborns with TGA were more likely to have growth asymmetry with smaller heads relative to weight while SVP newborns were symmetrically small. There was no association between BW, HC or asymmetry and WMI on preoperative brain MRI or with measures of microstructural brain development. Similarly, growth parameters at birth were not associated with NDO at 30 months. In a multivariable model only cardiac lesion and site were associated with NDO. Unlike other high-risk infant populations, postnatal markers of fetal growth including head to body asymmetry that is common in TGA is not associated with brain injury or NDO. Lesion type appears to play a more important role in NDO in CHD

    Brief Report: Characterization of Sensory Over-Responsivity in a Broad Neurodevelopmental Concern Cohort Using the Sensory Processing Three Dimensions (SP3D) Assessment

    No full text
    Sensory Over-Responsivity (SOR) is an increasingly recognized challenge among children with neurodevelopmental concerns (NDC). To investigate, we characterized the incidence of auditory and tactile over-responsivity (AOR, TOR) among 82 children with NDC. We found that 70% of caregivers reported concern for their child's sensory reactions. Direct assessment further revealed that 54% of the NDC population expressed AOR, TOR, or both - which persisted regardless of autism spectrum disorder (ASD) diagnosis. These findings support the high prevalence of SOR as well as its lack of specificity to ASD. Additionally, AOR is revealed to be over twice as prevalent as TOR. These conclusions present several avenues for further exploration, including deeper analysis of the neural mechanisms and genetic contributors to sensory processing challenges
    corecore