9 research outputs found
Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication
Hepatitis C Virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5´untranslated region (5´UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3´UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5´- and 3´-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5´end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3´UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation
Recommended from our members
The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2.
The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.This work was supported by Cancer Research UK grants (C13474/A18583, C6946/A14492) to E.A.M.; Wellcome grants (104640/Z/14/Z, 092096/Z/10/Z) to E.A.M.
Molecular epidemiology, phylogeny, and phylodynamics of CRF63_02A1, a recently originated HIV-1 circulating recombinant form spreading in Siberia
The HIV-1 epidemic in Russia is dominated by the former Soviet Union subtype A (A(FSU)) variant, but other genetic forms are circulating in the country. One is the recently described CRF63_02A1, derived from recombination between a CRF02_AG variant circulating in Central Asia and A(FSU), which has spread in the Novosibirsk region, Siberia. Here we phylogenetically analyze pol and env segments from 24 HIV-1 samples from the Novosibirsk region collected in 2013, with characterization of three new near full-length genome CRF63_02A1 sequences, and estimate the time of the most recent common ancestor (tMRCA) and the demographic growth of CRF63_02A1 using a Bayesian method. The analyses revealed that CRF63_02A1 is highly predominant in the Novosibirsk region (81.2% in pol sequences) and is transmitted both among injecting drug users and by heterosexual contact. Similarity searches with database sequences combined with phylogenetic analyses show that CRF63_02A1 is circulating in East Kazakhstan and the Eastern area of Russia bordering China. The analyses of near full-length genome sequences show that its mosaic structure is more complex than reported, with 18 breakpoints. The tMRCA of CRF63_02A1 was estimated around 2006, with exponential growth in 2008-2009 and subsequent stabilization. These results provide new insights into the molecular epidemiology, phylogeny, and phylodynamics of CRF63_02A1.We thank the personnel at the Genomic Unit of Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, for technical assistance in sequencing, and Bonnie Mathieson, from the Office of AIDS Research, National Institutes of Health, Bethesda, Maryland for her support of this study. This work was funded by Office of AIDS Research, National Institutes of Health, through the training program âMolecular Epidemiology of HIV-1 in Eastern Europe and Its Significance for Vaccine Development.âS
Cellular gene expression during Hepatitis C virus replication as revealed by Ribosome Profiling
Background: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. Methods: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. Results: Established viral replication does not cause global changes in host gene expressionâonly around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. Conclusion: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming (âWarburg effectâ) even in the hepatocellular carcinoma cells used here
Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5Ⲡuntranslated region (5ⲠUTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3ⲠUTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5â˛- and 3â˛-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNAâRNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5Ⲡend of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3ⲠUTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation
Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges
<p>Circular RNAs (circRNAs) were recently described as a novel class of cellular RNAs. Two circRNAs were reported to function as molecular sponges, sequestering specific microRNAs, thereby de-repressing target mRNAs. Due to their elevated stability in comparison to linear RNA, circRNAs may be an interesting tool in molecular medicine and biology. In this study, we provide a proof-of-principle that circRNAs can be engineered as microRNA sponges. As a model system, we used the Hepatitis C Virus (HCV), which requires cellular microRNA-122 for its life cycle. We produced artificial circRNA sponges <i>in vitro</i> that efficiently sequester microRNA-122, thereby inhibiting viral protein production in an HCV cell culture system. These circRNAs are more stable than their linear counterparts, and localize both to the cytoplasm and to the nucleus, opening up a wide range of potential applications.</p
Ribosome Pausing at Inefficient Codons at the End of the Replicase Coding Region Is Important for Hepatitis C Virus Genome Replication
Hepatitis C virus (HCV) infects liver cells and often causes chronic infection, also leading to liver cirrhosis and cancer. In the cytoplasm, the viral structural and non-structural (NS) proteins are directly translated from the plus strand HCV RNA genome. The viral proteins NS3 to NS5B proteins constitute the replication complex that is required for RNA genome replication via a minus strand antigenome. The most C-terminal protein in the genome is the NS5B replicase, which needs to initiate antigenome RNA synthesis at the very 3′-end of the plus strand. Using ribosome profiling of cells replicating full-length infectious HCV genomes, we uncovered that ribosomes accumulate at the HCV stop codon and about 30 nucleotides upstream of it. This pausing is due to the presence of conserved rare, inefficient Wobble codons upstream of the termination site. Synonymous substitution of these inefficient codons to efficient codons has negative consequences for viral RNA replication but not for viral protein synthesis. This pausing may allow the enzymatically active replicase core to find its genuine RNA template in cis, while the protein is still held in place by being stuck with its C-terminus in the exit tunnel of the paused ribosome