27 research outputs found

    Decreased Prevalence of Plasmodium Falciparum Resistance Markers to Amodiaquine Despite its wide Scale use as ACT Partner Drug in Zanzibar.

    Get PDF
    Zanzibar has recently undergone a rapid decline in Plasmodium falciparum transmission following combined malaria control interventions with artemisinin-based combination therapy (ACT) and integrated vector control. Artesunate-amodiaquine (ASAQ) was implemented as first-line treatment for uncomplicated P. falciparum malaria in Zanzibar in 2003. Resistance to amodiaquine has been associated with the single nucleotide polymorphism (SNP) alleles pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y. An accumulation of these SNP alleles in the parasite population over time might threaten ASAQ efficacy.The aim of this study was to assess whether prolonged use of ASAQ as first-line anti-malarial treatment selects for P. falciparum SNPs associated with resistance to the ACT partner drug amodiaquine. The individual as well as the combined SNP allele prevalence were compared in pre-treatment blood samples from patients with uncomplicated P. falciparum malaria enrolled in clinical trials conducted just prior to the introduction of ASAQ in 2002-2003 (n = 208) and seven years after wide scale use of ASAQ in 2010 (n = 122). There was a statistically significant decrease of pfcrt 76T (96-63%), pfmdr1 86Y (75-52%), 184Y (83-72%), 1246Y (28-16%) and the most common haplotypes pfcrt/pfmdr1 TYYD (46-26%) and TYYY (17-8%), while an increase of pfcrt/pfmdr1 KNFD (0.4-14%) and KNYD (1-12%). This is the first observation of a decreased prevalence of pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y in an African setting after several years of extensive ASAQ use as first-line treatment for uncomplicated malaria. This may support sustained efficacy of ASAQ on Zanzibar, although it was unexpected considering that all these SNPs have previously been associated with amodiaquine resistance. The underlying factors of these results are unclear. Genetic dilution by imported P. falciparum parasites from mainland Tanzania, a de-selection by artesunate per se and/or an associated fitness cost might represent contributing factors. More detailed studies on temporal trends of molecular markers associated with amodiaquine resistance are required to improve the understanding of this observation

    Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability

    Get PDF
    Background: The need for new malaria surveillance tools and strategies is critical, given improved global malaria control and regional elimination efforts. High quality Plasmodium falciparum DNA can reliably be extracted from malaria rapid diagnostic tests (RDTs). Together with highly sensitive molecular assays, wide scale collection of used RDTs may serve as a modern tool for improved malaria case detection and drug resistance surveillance. However, comparative studies of DNA extraction efficiency from RDTs and the field applicability are lacking. The aim of this study was to compare and evaluate different methods of DNA extraction from RDTs and to test the field applicability for the purpose of molecular epidemiological investigations. Methods: DNA was extracted from two RDT devices (Paracheck-PfW and SD Bioline Malaria Pf/Pan (R)), seeded in vitro with 10-fold dilutions of cultured 3D7 P. falciparum parasites diluted in malaria negative whole blood. The level of P. falciparum detection was determined for each extraction method and RDT device with multiple nested-PCR and real-time PCR assays. The field applicability was tested on 855 paired RDT (Paracheck-Pf) and filter paper (Whatman (R) 3MM) blood samples (734 RDT negative and 121 RDT positive samples) collected from febrile patients in Zanzibar 2010. RDT positive samples were genotyped at four key single nucleotide polymorphisms (SNPs) in pfmdr1 and pfcrt as well as for pfmdr1 copy number, all associated with anti-malarial drug resistance. Results: The P. falciparum DNA detection limit varied with RDT device and extraction method. Chelex-100 extraction performed best for all extraction matrixes. There was no statistically significant difference in PCR detection rates in DNA extracted from RDTs and filter paper field samples. Similarly there were no significant differences in the PCR success rates and genotyping outcomes for the respective SNPs in the 121 RDT positive samples. Conclusions: The results support RDTs as a valuable source of parasite DNA and provide evidence for RDT-DNA extraction for improved malaria case detection, molecular drug resistance surveillance, and RDT quality control.ACT Consortium through Bill and Melinda Gates Foundation; Swedish International Development Agency (SIDA) [SWE 2009-193]; Swedish Civil Contingencies Agency (MSB) [2010-7991]; Swedish Medical Research Council (VR) [2009-3785]; Goljes Foundationinfo:eu-repo/semantics/publishedVersio

    The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.

    Get PDF
    BACKGROUND\ud \ud We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud \ud METHODS AND FINDINGS\ud \ud We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud \ud CONCLUSIONS\ud \ud The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT01002066

    Improving prescribing practices with rapid diagnostic tests (RDTs): synthesis of 10 studies to explore reasons for variation in malaria RDT uptake and adherence.

    Get PDF
    OBJECTIVES: The overuse of antimalarial drugs is widespread. Effective methods to improve prescribing practice remain unclear. We evaluated the impact of 10 interventions that introduced rapid diagnostic tests for malaria (mRDTs) on the use of tests and adherence to results in different contexts. DESIGN: A comparative case study approach, analysing variation in outcomes across different settings. SETTING: Studies from the ACT Consortium evaluating mRDTs with a range of supporting interventions in 6 malaria endemic countries. Providers were governmental or non-governmental healthcare workers, private retail sector workers or community volunteers. Each study arm in a distinct setting was considered a case. PARTICIPANTS: 28 cases from 10 studies were included, representing 148 461 patients seeking care for suspected malaria. INTERVENTIONS: The interventions included different mRDT training packages, supervision, supplies and community sensitisation. OUTCOME MEASURES: Analysis explored variation in: (1) uptake of mRDTs (% febrile patients tested); (2) provider adherence to positive mRDTs (% Plasmodium falciparum positive prescribed/given Artemisinin Combination Treatment); (3) provider adherence to negative mRDTs (% P. falciparum negative not prescribed/given antimalarial). RESULTS: Outcomes varied widely across cases: 12-100% mRDT uptake; 44-98% adherence to positive mRDTs; 27-100% adherence to negative mRDTs. Providers appeared more motivated to perform well when mRDTs and intervention characteristics fitted with their own priorities. Goodness of fit of mRDTs with existing consultation and diagnostic practices appeared crucial to maximising the impact of mRDTs on care, as did prior familiarity with malaria testing; adequate human resources and supplies; possible alternative treatments for mRDT-negative patients; a more directive intervention approach and local preferences for ACTs. CONCLUSIONS: Basic training and resources are essential but insufficient to maximise the potential of mRDTs in many contexts. Programme design should respond to assessments of provider priorities, expectations and capacities. As mRDTs become established, the intensity of supporting interventions required seems likely to reduce

    High Effective Coverage of Vector Control Interventions in Children After Achieving Low Malaria Transmission in Zanzibar, Tanzania.

    Get PDF
    \ud \ud Formerly a high malaria transmission area, Zanzibar is now targeting malaria elimination. A major challenge is to avoid resurgence of malaria, the success of which includes maintaining high effective coverage of vector control interventions such as bed nets and indoor residual spraying (IRS). In this study, caretakers' continued use of preventive measures for their children is evaluated, following a sharp reduction in malaria transmission. A cross-sectional community-based survey was conducted in June 2009 in North A and Micheweni districts in Zanzibar. Households were randomly selected using two-stage cluster sampling. Interviews were conducted with 560 caretakers of under-five-year old children, who were asked about perceptions on the malaria situation, vector control, household assets, and intention for continued use of vector control as malaria burden further decreases. Effective coverage of vector control interventions for under-five children remains high, although most caretakers (65%; 363/560) did not perceive malaria as presently being a major health issue. Seventy percent (447/643) of the under-five children slept under a long-lasting insecticidal net (LLIN) and 94% (607/643) were living in houses targeted with IRS. In total, 98% (628/643) of the children were covered by at least one of the vector control interventions. Seasonal bed-net use for children was reported by 25% (125/508) of caretakers of children who used bed nets. A high proportion of caretakers (95%; 500/524) stated that they intended to continue using preventive measures for their under-five children as malaria burden further reduces. Malaria risk perceptions and different perceptions of vector control were not found to be significantly associated with LLIN effective coverage While the majority of caretakers felt that malaria had been reduced in Zanzibar, effective coverage of vector control interventions remained high. Caretakers appreciated the interventions and recognized the value of sustaining their use. Thus, sustaining high effective coverage of vector control interventions, which is crucial for reaching malaria elimination in Zanzibar, can be achieved by maintaining effective delivery of these interventions

    Global hälsa på läkarutbildningen igår, idag och imorgon

    No full text
    Undervisning i global hälsa förekommer i olika former vid samtliga läkarutbildningar i Sverige, och på vissa håll har kursmoment med fokus på internationell hälsa funnits i över trettio år. I denna artikel presenteras utvecklingenav global hälsa vid Sveriges läkarutbildningar – från dåtid till nutid och framtid. Textbidrag har inkommit från respektive lärosäte och sammanställts av Helena Nordenstedt och Hampus Holmer.Global health education exists in different forms in all medical programs in Sweden, and in some places parts of courses with a focus on international health has existed for more than 30 years. In this article we the development of global health education in the medical programs in Sweden is presented – from then to now and into the future. Each university has contributed texts, and these contributions have then been compiled by Helena Nordenstedt and Hampus Holmer

    Area chart showing the sequence alignments of target genes, primers and probes.

    No full text
    <p>a) Five copies of the 18S rRNA gene in the <i>P</i>. <i>falciparum</i> genome. b) Five copies of the 18S rRNA gene in the <i>P</i>. <i>vivax</i> genome. c) Combined ten copies of the 18S rRNA gene in the <i>P</i>. <i>falciparum</i> and <i>P</i>. <i>vivax</i> genomes. d) The cytb genes of <i>P</i>. <i>falciparum</i>, <i>P</i>. <i>vivax</i>, <i>P</i>. <i>malariae</i>, and <i>P</i>. <i>ovale</i>. Identical sequences are shown in grey in the chart area. Nucleotide base pair position is shown on the X-axis and the proportion of sequences in consensus is shown on the Y-axis. Primer and probe positions of respective PCRs are indicated using white arrows along the dashed lines (1, 18S-nPCR pan-<i>Plasmodium</i> primers; 1’, 18S-nPCR species-specific primers; 2, 18S-qPCR-R pan-<i>Plasmodium</i> primers and probe; 2’, 18S-qPCR-R species-specific primers and probes; 3, 18S-qPCR-K; 4, cytb-nPCR; and 5, cytb-qPCR).</p

    PCR and species results for the 65 ‘final positive’ field samples.

    No full text
    <p>Each row represents one sample. Pan, <i>Plasmodium spp</i>.; F, <i>P</i>. <i>falciparum</i>; M, <i>P</i>. <i>malariae</i>; FM, <i>P</i>. <i>falciparum</i> and <i>P</i>. <i>malariae</i> mixed infection; +, positive; −, negative.</p

    Parasite detection limits for each PCR method.

    No full text
    <p>Solid dots represent PCR positive and hollow dots represent PCR negative samples. Detection limits are shaded in grey.</p
    corecore