110 research outputs found
Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 11418, doi:10.1038/srep11418.Endogenous circadian clocks are poorly understood within early-diverging animal lineages. We have characterized circadian behavioral patterns and identified potential components of the circadian clock in the starlet sea anemone, Nematostella vectensis: a model cnidarian which lacks algal symbionts. Using automatic video tracking we showed that Nematostella exhibits rhythmic circadian locomotor activity, which is persistent in constant dark, shifted or disrupted by external dark/light cues and maintained the same rate at two different temperatures. This activity was inhibited by a casein kinase 1ÎŽ/Δ inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock. Using high-throughput sequencing we profiled Nematostella transcriptomes over 48âhours under a light-dark cycle. We identified 180 Nematostella diurnally-oscillated transcripts and compared them with previously established databases of adult and larvae of the symbiotic coral Acropora millepora, revealing both shared homologues and unique rhythmic genes. Taken together, this study further establishes Nematostella as a non-symbiotic model organism to study circadian rhythms and increases our understanding about the fundamental elements of circadian regulation and their evolution within the Metazoa.This work was supported by the Israel-US Binational Science Foundation to OL and AMT (Award 2011187). Additional support was provided by the WHOI Early Career Scientist Award to AMT
Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a
Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep/wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a(kcnh4a-/-) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.United States-Israel Binational Science Foundation (Grant 2011335)Israel Science Foundation (Grant 366/11)Israel Science Foundation (Legacy Heritage Biomedical Program Grant 398/11)Israel Science Foundation (Legacy Heritage Biomedical Program Grant 992/14)European Community. Marie-Curie Research Networks (International Reintegration Grant FP7-PEOPLE-2010-RG274333
Systematic identification of edited microRNAs in the human brain
Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNAâmRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare. Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread
A-to-I RNA editing in the earliest-diverging Eumetazoan phyla
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology and Evolution 34 (2017): 1890-1901, doi:10.1093/molbev/msx125.The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.This work was supported by the Australian Research Council (to PK), the European Research Council (grant 311257), the I-CORE Program of the Planning and Budgeting Committee in Israel (grants 41/11 and 1796/12), and the Israel Science Foundation (1380/14)
Trade-off between transcriptome plasticity and genome evolution in cephalopods
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Cell Press for personal use, not for redistribution. The definitive version was published in Cell 169 (2017): 191-202, doi:10.1016/j.cell.2017.03.025.RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the
genomic blueprint; however it is infrequently used among animals. Recent reports suggesting
increased levels of RNA editing in squids thus raise the question of their nature and effects in
these organisms. We here show that RNA editing is particularly common in behaviorally
sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites.
Editing is enriched in the nervous system affecting molecules pertinent for excitability and
neuronal morphology. The genomic sequence flanking editing sites is highly conserved,
suggesting that the process confers a selective advantage. Due to the large number of sites, the
surrounding conservation greatly reduces the number of mutations and genomic polymorphisms
in protein coding regions. This trade-off between genome evolution and transcriptome plasticity
highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly
those associated with neural function.NLB was supported by a post-doctoral
scholarship from the Center for Nanoscience and Nanotechnology, Tel-Aviv University.
The research of RU is supported by the Israel Science Foundation (772/13). The research
of EYL was supported by the European Research Council (311257) and the Israel Science
Foundation (1380/14). The research of JJCR was supported by the National Institutes of
Health [1R0111223855, 1R01NS64259], the National Science Foundation (HRD-
1137725), and the Frank R. Lillie and Laura and Arthur Colwin Research Fellowships
from the Marine Biological Laboratory in Woods Hole. The work of JJCR and EE was
supported by grant No 094/2013 from the United States-Israel Binational Science
Foundation (BSF).2018-04-0
Urbanization comprehensively impairs biological rhythms in coral holobionts
Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261â269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502â511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura studyâincorporating sampling at diel, monthly, and seasonal time pointsâin which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities
Resource: A multiâspecies multiâtimepoint transcriptome database and webpage for the pineal gland and retina
The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.Fil: Chang, Eric. National Instituto of Child Health & Human Development; Estados UnidosFil: Fu, Cong. National Instituto of Child Health & Human Development; Estados UnidosFil: Coon, Steven L.. National Instituto of Child Health & Human Development; Estados UnidosFil: Alon, Shahar. No especifĂca;Fil: Bozinoski, Marjan. No especifĂca;Fil: Breymaier, Matthew. National Instituto of Child Health & Human Development; Estados UnidosFil: Bustos, Diego Martin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Clokie, Samuel J.. National Instituto of Child Health & Human Development; Estados UnidosFil: Gothilf, Yoav. No especifĂca;Fil: Esnault, Caroline. National Instituto of Child Health & Human Development; Estados UnidosFil: Iuvone, P. Michael. Emory University School of Medicine; Estados UnidosFil: Mason, Christopher E.. No especifĂca;Fil: Ochocinska, Margaret J.. National Instituto of Child Health & Human Development; Estados UnidosFil: Tovin, Adi. No especifĂca;Fil: Wang, Charles. Loma Linda University; Estados UnidosFil: Xu, Pinxian. No especifĂca;Fil: Zhu, Jinhang. No especifĂca;Fil: Dale, Ryan. National Instituto of Child Health & Human Development; Estados UnidosFil: Klein, David C.. National Instituto of Child Health & Human Development; Estados Unido
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior
- âŠ