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Abstract 20 

Sleep has been conserved throughout evolution; however, the molecular and 21 

neuronal mechanisms of sleep are largely unknown. The hypothalamic 22 

hypocretin/orexin (Hcrt) neurons regulate sleep/wake states, feeding, stress, and 23 

reward. To elucidate the mechanism that enables these various functions and to 24 

identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in 25 

hcrt:EGFP zebrafish. Dozens of Hcrt-neuron–specific transcripts were identified and 26 

comprehensive high-resolution imaging revealed gene-specific localization in all or 27 

subsets of Hcrt neurons. Clusters of Hcrt-neuron–specific genes are predicted to be 28 

regulated by shared transcription factors. These findings show that Hcrt neurons are 29 

heterogeneous and that integrative molecular mechanisms orchestrate their diverse 30 

functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all 31 

Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The 32 

mutant kcnh4a (kcnh4a-/-) larvae showed reduced sleep time and consolidation, 33 

specifically during the night, suggesting that Kcnh4a regulates sleep. 34 

35 
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Introduction  36 

Sleep is a fundamental behavior that benefits the brain and sleep disorders affect a 37 

large portion of the world’s population (1). Thus, it is essential to identify and 38 

understand the role of the neuronal circuits and genes that regulate sleep. The 39 

hypothalamus centralizes sleep regulation and maintains essential physiological 40 

processes, including growth, reproduction, body temperature, stress, reward, 41 

feeding, and circadian rhythms (2–9). These functions are mediated by several 42 

hypothalamic nuclei that interact with various neuronal networks. Some of these 43 

nuclei, such as the suprachiasmatic nucleus (SCN), which is the master circadian 44 

oscillator (10), have been well characterized both anatomically and physiologically, 45 

while the neuronal identity and function of other nuclei is less understood (11–13). 46 

The hypocretin (Hcrt, also called orexin) neurons secrete the Hcrt neuropeptides 47 

and are located in the lateral hypothalamus (LH). These hypothalamic neurons 48 

project to wide areas in the brain, including the tuberomammillary nucleus, 49 

paraventricular thalamic nucleus, arcuate nucleus, and monoaminergic nuclei (14). 50 

They were initially implicated in feeding behavior and sleep/wake cycles (15,16). 51 

Their role in sleep regulation was further strengthened since loss of Hcrt neurons 52 

causes the sleep disorder narcolepsy, which is characterized by sleep/wake 53 

fragmentation, increased body mass, and cataplexy (loss of muscle tone, often 54 

triggered by emotional stimuli) (17–22). However, extensive research showed that 55 

the function of Hcrt neurons is much broader and also includes regulation of energy 56 

homeostasis, pain, emotion, stress response, and reward (12,14,23). The Hcrt 57 

neurons regulate this variety of brain functions through interactions with peptide- 58 

secreting neurons and with the monoaminergic, dopaminergic, and limbic systems, 59 

among others (24).  60 
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How do Hcrt neurons serve as a multifunctional hypothalamic system? Clearly, 61 

secretion of the neuropeptide Hcrt is a key pathway. A single hcrt gene encodes for 62 

the precursor polypeptide prepro-Hcrt, which is cleaved to produce two Hcrt 63 

neuropeptides. The actions of the Hcrt neuropeptides are mediated via two Hcrt G- 64 

protein–coupled receptors (Hcrtrs) (14). In addition, the synaptic release of 65 

glutamate from Hcrt neurons has been shown to affect the activity of post-synaptic 66 

target neurons (25,26). However, Hcrt neurons contain additional proteins that are 67 

likely involved in mediating their development, plasticity, and diverse functions. To 68 

date, only a few Hcrt-neuron–specific genes were substantially characterized and, 69 

except for hcrt, none of them are exclusively expressed in Hcrt neurons (27–40). A 70 

comprehensive and specific gene-expression profiling of Hcrt neurons will enhance 71 

the understanding of Hcrt neuronal networks and its diverse functions. 72 

Three studies have described the gene-expression profile of Hcrt neurons in rodents 73 

(33,34,36). First, RNA array was used to study the effect of loss of Hcrt neurons on 74 

the expression of hypothalamic transcripts in Hcrt-neuron–ablated mice (36). Later, 75 

using affinity purification of RNAs and transgenic mice that express FLAG-tagged 76 

poly(A)-binding protein, specifically in Hcrt neurons, polyadenylated mRNA was 77 

isolated and classified (33). Finally, the translating ribosome affinity purification 78 

technique that targets HCRT-producing neurons, was used to isolate Hcrt cell- 79 

specific RNA in mice (34). These extensive studies resulted in a list of genes 80 

expressed in Hcrt neurons. However, in the opaque mammalian brain, isolation of 81 

the entire Hcrt neuron population is challenging because a few thousand Hcrt cells 82 

are intermingled with other hypothalamic neurons. In addition, all studies used 83 

microarray technology, which limits gene resolution and requires a priori knowledge 84 

of transcript content.  85 
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The zebrafish has become a valuable model for the study of specific neuronal 86 

populations in live animals. It is a simple and diurnal vertebrate that combines 87 

powerful genetic tools with conserved anatomy and function of the brain (41–43). In 88 

the last two decades, behavioral criteria have been used to characterize sleep in 89 

zebrafish (44–48). Similar to mammals, the Hcrt neurons are located in the zebrafish 90 

hypothalamus but, in contrast to mammals, the zebrafish Hcrt system contains only 91 

a few neurons, making it a relatively simple system to study (49,50). Functional 92 

studies using Hcrt-neuron–specific genetic ablation, as well as genetic manipulation 93 

of the hcrt ligand and receptors, showed that the Hcrt system regulates sleep and 94 

wake in zebrafish (45,46,48). In addition, the zebrafish Hcrt neurons induce feeding 95 

behavior (51), as is the case in mammals. Recently, in order to study Hcrt-neuron 96 

specification, a screen for regulatory factors was conducted in the early stages of 97 

zebrafish development [26 hours post-fertilization (hpf), (37)]. Similar to mammals 98 

(34), microarray gene-expression analysis revealed that the LIM homeobox 99 

transcription factor Lhx9, which is widely expressed in the brain, including in the Hcrt 100 

neurons, can induce the specification of Hcrt neurons (37). In the present work, we 101 

used 7-days-post-fertilization (dpf) transgenic zebrafish larvae expressing EGFP 102 

under the promoter of hcrt (52), to identify genes that regulate Hcrt-neuron function. 103 

The hcrt:EGFP larvae were used to specifically isolate Hcrt neurons by 104 

fluorescence-activated cell sorting (FACS). Using whole transcriptome RNA 105 

sequencing (RNA-seq), meticulous bioinformatic analysis, and extensive anatomical 106 

validations, a novel set of Hcrt-neuron–specific genes was identified. Furthermore, 107 

the role of the voltage-gated potassium channel Kcnh4a in regulating sleep 108 

architecture was studied.  109 

Results 110 
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Isolation of Hcrt neurons 111 

In order to isolate the Hcrt neurons, the transgenic hcrt:EGFP zebrafish (52), which 112 

enables specific visualization and manipulation of the entire population of Hcrt 113 

neurons (16-20 cells per larva), was used. At 7 dpf, the heads of hcrt:EGFP larvae 114 

(Figure 1A-B) were dissociated, and EGFP-positive (EGFP+) cells from the cell 115 

suspension sample (Figure 1C) were sorted by FACS (Figure 1D-G). The sorting 116 

thresholds were set to accurately detect the small amounts of cells expressing 117 

EGFP while avoiding the auto-fluorescent cells derived primarily from the eyes of 118 

the larvae (Figure 1B). In order to calibrate the threshold and additional FACS 119 

parameters, α-tubulin:EGFP-injected larvae (Figure 1E), which expressed EGFP in 120 

the entire central nervous system (CNS), were also FAC-sorted. To avoid off-target 121 

sorting of EGFP-negative (EGFP-) cells and to set the threshold of EGFP+ cells, we 122 

applied the same parameters and filters to a cell suspension sample derived from 123 

wild-type (WT) larvae (Figure 1F). As expected, the number of EGFP+ cells sorted 124 

from hcrt:EGFP larvae (Figure 1G) was low compared with the number of cells 125 

sorted from α-tubulin:EGFP-injected larvae. EGFP+ cells were not detected in WT 126 

larvae (Figure 1F). Using this technique, we collected 300 EGFP+ and 300 EGFP- 127 

cells from hcrt:EGFP larvae in three independent experiments. To verify that the 128 

EGFP+ cells were Hcrt neurons, RNA extraction was performed, followed by reverse 129 

transcription PCR (RT-PCR) assays. While hcrt and egfp were detected in EGFP+ 130 

cells, they were not amplified in EGFP- cells (Figure 1H). These results show that 131 

the EGFP+ cells mostly contain Hcrt neurons, while the EGFP- group contains a 132 

heterogeneous population of cells from the whole larva head. Since the amount of 133 

RNA extracted from 300 cells was extremely low (below 1 pg/µl) and required pre- 134 

amplification before deep sequencing, RNA was extracted from a third control group 135 
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of cells derived  from a whole head of 7 dpf WT larvae. This group helped to 136 

distinguish false positive signals that might have resulted from the amplification, and 137 

covered genes that were widely expressed in the head and not restricted to 300 138 

EGFP- cells. The RNA of the three groups: EGFP+, EGFP-, and whole head, was 139 

subjected to RNA-Seq and bioinformatic analysis (Figure 1I) to obtain a list of Hcrt- 140 

neuron–enriched genes. 141 

Systematic identification and spatial characterization of genes enriched in 142 

Hcrt neurons 143 

We aimed to identify novel players that regulate the myriad of processes 144 

coordinated by Hcrt neurons. Thus, the RNA-seq data from EGFP+, EGFP-, and 145 

whole-head groups (http://www.ncbi.nlm.nih.gov/sra, PRJNA283169) were analyzed 146 

in silico. Initially, the raw read counts were normalized to transcripts per million 147 

(TPM), and a gene was considered to be preferentially expressed in the Hcrt cells 148 

only if its normalized expression level was at least 100 TPM in EGFP+ cells. In 149 

addition, the expression levels were required to be at least 7 times more abundant in 150 

the EGFP+ than in both controls. These criteria stipulated a high level of specificity 151 

to the EGFP+ samples relative to the control samples. The bioinformatic analysis 152 

identified 20 transcripts that were found to meet these criteria (p<0.01, Figure 2A). 153 

Among the 20 transcripts, 12 were annotated genes and 8 were non-annotated 154 

transcripts. Notably, the hcrt gene was expressed at a level of 300 TPM in EGFP+ 155 

and below 10 TPM in both control samples. The identification of an hcrt gene 156 

confirmed the specificity of the cell sorting, the RNA-seq, and the bioinformatic 157 

analysis.  158 
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In order to validate the bioinformatic results and to determine the spatial expression 159 

pattern of the candidate genes, whole-mount in situ hybridization (ISH) was 160 

performed on 2 dpf WT larvae (Figure 2B-M) using gene-specific probes for the 161 

enriched genes (Figure 2A). Nine of them were found to be expressed in the 162 

hypothalamic area (hcrt, star, dennd1b, kcnh4a, fam46a, si:dkey-58b18.8, 163 

cuff23873.1, npvf, and npffr; Figure 2B-M).  Five transcripts (adra, ptgs2b, grpr, 164 

cuff64723, and cuff77494,) could not be amplified, and the expression of six 165 

transcripts (elovl7b, cuff34876, cuff70256, cuff442204, cuff57637, and cuff77484) 166 

was not detected at the 2 dpf larval stage. To test whether these genes were 167 

expressed in later developmental stages, their expression was studied in adults. 168 

However, only elovl7b showed a detectable expression in the hypothalamus (Figure 169 

3J-J''). The hypothalamic expression pattern of the candidate genes was similar to 170 

the expression pattern of hcrt (Figure 2B), suggesting that the candidate genes may 171 

be expressed in Hcrt neurons.  172 

The high percentage of genes that showed hypothalamic expression hints at 173 

significant efficiency of the FACS and RNA-seq experiments. Thus, in order to find 174 

more Hcrt-neuron–specific genes, we relaxed the bioinformatic parameters to 10 175 

TPM and 3.6 times higher abundance in EGFP+ cells than in the control groups. 176 

This analysis revealed 212 transcripts that met the criteria (p<0.01, Figure 2–source 177 

data 1), among them, 146 were non-annotated (called cuff-serial number) and 66 178 

were annotated genes. The functional roles of the annotated genes are diverse and 179 

include, for example, regulation of metabolism [such as ELOVL fatty acid elongase 180 

7b (elovl7b)], sleep (lhx9), synaptogenesis and synaptic plasticity [such as the 181 

guanine nucleotide exchange gene (denndbl)]. Some of the non-annotated 182 

transcripts were likely long, non-coding RNA (lncRNA) since they were longer than 183 
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200 bp, did not include a coding sequence, and were located in intergenic regions 184 

(53). lncRNAs regulate transcription and epigenetic processes and may be involved 185 

in the regulation of splicing and translation (54). Notably, some non-annotated 186 

transcripts were located in the zebrafish genome near Hcrt-enriched genes. In 187 

addition to the 8 genes tested (Figure 2C-J), we attempted to examine the 188 

expression of selected candidate genes that demonstrate relatively lower 189 

enrichment in Hcrt neurons (Figure 2–source data 1). We selected zgc:171844, H6 190 

homeobox 3 (hmx3), and lhx9, which were located in the bottom 100 genes in the 191 

list (Figure 2–source data 1). Previous work showed that lhx9 is expressed in Hcrt 192 

neurons in mammals and zebrafish (34,37) and that hmx3 is expressed in Hcrt 193 

neurons in the early stages of zebrafish development (37). Similar to the genes that 194 

demonstrated high fold change (Figure 2A), these three genes were also expressed 195 

in the hypothalamus, where hcrt is expressed (Figure 2K-M), suggesting that a large 196 

portion of the 212 transcripts (Figure 2–source data 1) may be expressed in the Hcrt 197 

neurons. 198 

Identification of genes localized in Hcrt neurons 199 

Single-probe ISH analysis showed that selected candidate transcripts are expressed 200 

in the hypothalamus and that their spatial expression pattern is reminiscent of the 201 

expression of the hcrt gene (Figure 2). To test whether these transcripts are 202 

expressed in Hcrt neurons, we performed whole-mount fluorescent ISH using 203 

probes for the candidate genes, coupled with immunofluorescence staining using 204 

EGFP antibody, in hcrt:EGFP 2 dpf larvae and adults. To verify the efficiency and 205 

specificity of this assay, co-localization of hcrt and EGFP was initially confirmed 206 

(Figure 3A-A’'). Double staining showed that among the 11 transcripts tested, 8 207 

transcripts (star, dennd1b, kcnh4a, fam46a, hmx3, zgc171844, lhx9, and si:dkey- 208 
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58b18.8) co-localized with EGFP in Hcrt neurons (Figure 3B-I''). While kcnh4a, 209 

hmx3, lhx9 and dennd1b were expressed in most Hcrt neurons, star, fam46a, and 210 

zgc171844, were expressed in a subset of the Hcrt neurons. In addition to their 211 

expression in Hcrt neurons, these transcripts were also expressed in other brain 212 

regions, particularly other hypothalamic areas and the forebrain. In contrast, si:dkey- 213 

58b18.8 demonstrated relatively weak expression that was predominantly apparent 214 

in Hcrt neurons (Figure 3E-E''). Further anatomical analysis in hcrt:EGFP adult brain 215 

sections was performed on four transcripts (Figure 3J-M''): elovl7b, which did not 216 

show expression in the earlier developmental stages (Figure 3J-J''), kcnh4a (Figure 217 

3K-K''), dennd1b (Figure 3L-L''), and zgc171844 (Figure 3M-M''). Double staining in 218 

adults showed that kcnh4a and elovl7b are detected in all Hcrt neurons, while 219 

dennd1b is expressed in about half of the Hcrt neurons and zgc171844 in about a 220 

third of the neurons. Notably, the portion of co-localization with EGFP in larvae was 221 

similar to that in adults. Altogether, the anatomical results validated the RNA-seq 222 

and bioinformatic analysis, which provide a comprehensive list of Hcrt neuron- 223 

specific transcripts. The spatial expression of these transcripts in subpopulations of 224 

Hcrt neurons indicates that Hcrt neurons are not a uniform population but rather 225 

heterogeneous neurons. Understanding the function of these transcripts will provide 226 

the basis to elucidate the mechanism that regulates the multifunctions of Hcrt 227 

neurons.  228 

Identification of hypothalamic neuronal populations located adjacent to Hcrt 229 

neurons 230 

The histochemical assays revealed transcripts expressed in Hcrt neurons. However, 231 

three candidate transcripts (cuff.23873, npvf, and npffr; Figure 2H-J) labeled distinct 232 



11 
 

hypothalamic populations of neurons that intermingled with Hcrt neurons, but co- 233 

localization was not detected (Figure 4). These cell populations were located in the 234 

immediate vicinity of the Hcrt neurons in the hypothalamus. While, cufff.23873 235 

(Figure 4A-C'') and npffr (Figure 4D-F'') were also expressed in the forebrain area, 236 

npvf (Figure 4G-I'') showed a specific hypothalamic expression pattern. The finding 237 

of transcripts that were apparently not expressed in Hcrt neurons in the 238 

transcriptome, could be due to the adhesion of hypothalamic cells adjacent to Hcrt 239 

neurons during the FACS procedure, or because these transcripts are also 240 

expressed by Hcrt neurons but below ISH detection levels. Nonetheless, these 241 

transcripts are predominantly expressed in hypothalamic neurons and may interact 242 

with Hcrt neurons to form neuronal networks that mediate the functions of Hcrt 243 

neurons.  244 

Hcrt-neuron–specific genes are predicted to share similar transcription 245 

regulation 246 

The mechanism that regulates the specific expression of transcripts in Hcrt neurons 247 

and the identity of the transcription factors (TFs) is unclear. To identify candidate 248 

TFs that can regulate multiple Hcrt-neuron–specific genes, a map of possible TF 249 

binding sites was generated based on the 48 most enriched transcripts. Conserved 250 

sequences in the predicted regulatory region of each Hcrt-neuron–specific gene 251 

were characterized, and the matched TFs that potentially bind to these sequences 252 

were identified. This analysis revealed 68 putative TFs (Figure 5A and Figure 5– 253 

source data 1), among them, 13 showed significant enrichment in the top 48 Hcrt- 254 

specific transcripts (p<0.005, Figure 5A) including nr6a1, which is a regulator of hcrt 255 

in mice (55). Notably, this analysis suggests that several specific TFs regulate 256 

numerous Hcrt-neuron–specific genes (Figure 5A). For example, the heat shock 257 
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transcription factor 1 (hsf1) is predicted to regulate 25 Hcrt-neuron–enriched genes: 258 

hcrt, ptgs2, ttn, hspa1l, grpr, elovl7b, slc4a1, lhx9, c16orf45, soat2, tsen54, nos1, 259 

rfx4, syt10, trpc7, ntng1, cacng4, myh4, dennd1b, sgsm1, pde2a, wscd1, adra1a, 260 

kcnh4a, and hmx3. To test whether this predicted TF is expressed in Hcrt neurons, 261 

fluorescent ISH, using a probe for hsf1, and fluorescent immunostaining using an 262 

antibody against EGFP, were performed on the brain section of adult hcrt:EGFP 263 

zebrafish (Figure 5B-C''). This assay showed wide brain expression of hsf1 and 264 

confirmed that hsf1 is also expressed in Hcrt neurons. In mammals, hsf1 is a key 265 

activator of stress conditions, and the Hsf1 null mice showed major brain 266 

morphological alterations (56). In zebrafish, hsf1 is essential for recovery from 267 

ischemic injury in the brain (57). In addition to hsf1, the TF binding-site analysis 268 

revealed the enrichment of TFs  that regulate metabolic processes (pax4, hnf1, 269 

ppara, lhx3, creb, and foxo4), such as control of the levels of glucagon, insulin, 270 

somatostatin, lipids, and glucose (58–63). In addition, ap-2, a TF that is required for 271 

sleep-like behavior in C. elegans (64), was predicted to regulate the transcription of 272 

13 Hcrt neuron-specific genes (Figure 5A). The identification of mutual TF binding 273 

sites in the regulatory sequences of Hcrt-neuron–specific genes suggests that 274 

several key TFs regulate the development and function of Hcrt neurons.  275 

Synteny, cloning, and protein structure of Kcnh4a 276 

Among the candidate genes (Figure 2–source data 1), the voltage-gated potassium 277 

channel kcnh4a was of particular interest because of its genomic location, 278 

expression pattern, and predicted role. Two kcnh4 are present in zebrafish: kcnh4a 279 

(KR733682) located in chromosome 3 and kcnh4b (XM_690738) located in 280 

chromosome 12. In contrast to the broad expression of kcnh4b (data not shown), 281 
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kcnh4a is expressed specifically in the forebrain and hypothalamus in larvae (Figure 282 

2E). Double ISH and immunofluorescence staining revealed that kcnh4a is localized 283 

in all Hcrt neurons in both larvae and adults (Figure 3D-D'' K-K'') and like Hcrt 284 

neurons, hypothalamic kcnh4a-expressing neurons are glutamatergic (Figure 6– 285 

figure supplement 1). Intriguingly, kcnh4a is localized only a few kilobase pairs (kbp) 286 

downstream to hcrt on the genome, and a synteny analysis showed that the 287 

genomic organization of this locus is conserved with mammals (Figure 6A). In 288 

humans, kcnh4a is located only 3782 bp downstream to the hcrt gene, while in 289 

zebrafish, the distance between the genes is 5517 bp (Figure 6A). Although kcnh4a 290 

expression is not restricted to Hcrt neurons, the genomic proximity of the two genes 291 

suggests a mutual transcription regulation. Indeed, a significant portion of the TFs 292 

predicted to regulate hcrt can also bind to kcnh4a regulatory sequences (48 out of 293 

52, Figure 5–source data 1).  294 

Vector cloning and sequencing of kcnh4a showed that the gene consists of 16 295 

exons, which include the 3456 bp coding sequence (CDS, Figure 6B). The start 296 

codon is located within the second exon, preceded by 1884 bp 5’ UTR. Exon 16 297 

includes the stop codon, followed by 1286 bp 3’UTR. Structural bioinformatic 298 

analysis of the protein sequence revealed that the Kcnh4a contains the 299 

evolutionarily conserved six S domains that characterize the potassium voltage- 300 

gated ion channels (Figure 6B) (65). Domains S1-S4 constitute the voltage-gated 301 

domain that senses changes in membrane potential (66,67), whereas domains S5- 302 

S6 form the selectivity pore through which ions can flux (65–67). Next, phylogenetic 303 

analysis  revealed that the zebrafish Kcnh4a protein is evolutionarily conserved with 304 

vertebrate orthologs (68). As expected, the zebrafish Kcnh4a protein showed the 305 
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highest homology to the Kcnh4 of another fish (Larimichthys_crocea) and, to a 306 

lesser extent, to the mammal Kcnh4 proteins (Figure 6C).  307 

Mild, reduced locomotor activity in kcnh4a-/- larvae 308 

In order to test the function of Kcnh4a, we established a clustered, regularly 309 

interspaced, short palindromic-repeat (CRISPR)-based kcnh4a mutant zebrafish 310 

(kcnh4a -/-). A 14 bp deletion mutation was generated in exon 5, which encoded part 311 

of the pore domain. This deletion introduced a premature stop codon and is 312 

predicted to result in truncated protein (Figure 6D). Furthermore, quantitative 313 

reverse transcription PCR (qRT-PCR) showed a reduction of 59% of kcnh4a mRNA 314 

levels in kcnh4a -/- compared to WT-sibling (kcnh4a+/+) 6dpf larvae (p<0.001, Figure 315 

6E). The founder (F0) fish was outcrossed with WT fish, and experiments were 316 

performed on the progeny of inter-crosses between F4 heterozygous fish (kcnh4a+/- 317 

).  318 

To study the rhythmic locomotor activity of kcnh4a-/- zebrafish, high-throughput 319 

video-tracking systems were used (48). The locomotor activity of kcnh4a-/- (n=85), 320 

kcnh4a+/- (n=209), and kcnh4a+/+ (n=98) was monitored during day and night (14 h 321 

light/10 h dark). As expected, larvae from all three genotypes exhibited rhythmic 322 

locomotor activity that peaked during the day (F[2,180]=14.98; p<0.0001, mixed-effect 323 

model with repeated measures; Figure 7A). Notably, kcnh4a-/- larvae were slightly 324 

hyperactive (average: 13.84 ± 0.11) compared to kcnh4a+/- (average: 13.29 ± 0.07, 325 

t=-4.19, df=180, p<0.01) and kcnh4a+/+ sibling larvae during the day (average: 12.98 326 

± 0.1, t=5.73, df=180, p<0.0001). During the night, the differences in locomotor 327 

activity were even lower, and the kcnh4a-/- larvae were slightly more active (average: 328 

8.05 ± 0.13) than the kcnh4a+/+ larvae (average: 7.64 ± 0.12, t=2.28, df=180, p<0.05; 329 



15 
 

Figure 7A, 7B). These results show that the loss of Kcnh4a mildly increases larval 330 

locomotor activity, particularly during the day.  331 

Reduced sleep time and altered sleep architecture in kcnh4a-/- larvae during 332 

the night  333 

Similar to humans, the zebrafish is a diurnal vertebrate that sleeps during the night 334 

(69,70). Using well-established behavioral criteria, sleep in larvae was defined as a 335 

period of one or more minutes of immobility, which is associated with an increase in 336 

arousal threshold (45,48). A previous study has shown that six hours of sleep 337 

deprivation (SD) during the night reduced locomotor activity in the following day 338 

(44). Similarly, six hours of SD during the night increased sleep time during the 339 

following day in 6 dpf larvae (Figure 7–figure supplement 1). Thus, similar to 340 

mammals, sleep in zebrafish larvae is regulated by circadian and homeostatic 341 

processes. 342 

Voltage-gated potassium channels are activated by membrane depolarization and 343 

contribute to neuronal repolarization and repetitive firing (71). Considering this role 344 

and the expression of kcnh4a in all Hcrt neurons, we tested whether it regulates 345 

sleep and wake. Similar to humans, zebrafish are diurnal animals; thus, all three 346 

genotypes (kcnh4a-/-, kcnh4a+/-, and kcnh4a+/+) slept more during the night than 347 

during the day (F[2,180]=14.52; p<0.0001, mixed-effect model with repeated 348 

measures, Figure 7C). Remarkably, while the amount of sleep was similar in all 349 

genotypes during the day (average: kcnh4a-/-= 2.76 ± 0.22; kcnh4a+/-= 2.80 ± 0.14; 350 

and kcnh4a+/+= 2.87 ± 0.21), sleep time was reduced in kcnh4a-/- larvae compared 351 

with kcnh4a+/- and kcnh4a+/+ larvae during the night (average: kcnh4a-/-= 13.08 ± 352 

0.27; kcnh4a+/-= 14.78 ± 0.17; and kcnh4a+/+= 15.46 ± 0.25, t=-6.55, df=180, 353 
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p<0.0001, Figure 7C, 7D). In order to examine the sleep architecture, we quantified 354 

the number of sleep/wake transitions and the length of sleep bouts. While the 355 

number of sleep/wake transitions did not change during the day (kcnh4a-/-= 3.52 ± 356 

0.16; kcnh4a+/+= 3.79 ± 0.15), their number was decreased in kcnh4a-/- larvae during 357 

the night (average: kcnh4a-/-= 12.68 ± 0.19; kcnh4a+/+= 13.62 ± 0.18, 358 

transitions/hour, F[1,80]=13.16; p<0.0005; df=80, p<0.0005, Figure 7E). In addition, 359 

the kcnh4a-/- larvae exhibit shorter sleep-bout length specifically during the night 360 

(average: kcnh4a-/-= 2.21 ± 0.05; kcnh4a+/+= 2.43 ± 0.05; min\hour df=81, p<0.005, 361 

Figure 7F). Thus, the reduction in the number and length of sleep episodes causes 362 

global reduction in sleep time during the night in kcnh4a-/- larvae. These results show 363 

that the loss of Kcnh4a affects sleep time and sleep consolidation, specifically 364 

during the night. It also suggests that Kcnh4a regulates sleep by repolarization of 365 

the membrane potential in sleep-regulating neurons.  366 

Discussion  367 

How the hypothalamic Hcrt neurons regulate diverse and fundamental physiological 368 

functions and what is the molecular mechanism that controls sleep are largely open 369 

questions. We revealed the molecular profile of the Hcrt neurons and functionally 370 

demonstrated the role of Kcnh4a in regulating sleep. Using FAC-sorting of the whole 371 

Hcrt neuronal population and RNA-seq of minute amounts of RNA, 212 Hcrt- 372 

neuron–specific transcripts were identified. Combination of fluorescent ISH and 373 

immunofluorescence assays confirmed that several transcripts are expressed in 374 

Hcrt neurons. The high efficiency and specificity of these anatomical experiments 375 

suggest that a large portion of the candidate genes (Figure 2–source data 1) are 376 

expressed in Hcrt neurons. Indeed, lhx9 and hmx3, which were ranked lower in the 377 
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list of candidate genes, were previously shown to be expressed in the early stages 378 

of Hcrt-neuron development (34,37), and we confirmed these observations in 7 dpf 379 

larvae. Thus, these results provide a comprehensive list of genes that are likely to 380 

mediate the multifunctions of Hcrt neurons. Comparison between the Hcrt-neuron– 381 

specific candidate genes isolated in zebrafish and mice (34) showed that eight 382 

genes (rfx4, lhx9, scg2, vgll2, ptprn, creb3l1, sgsm1, and fam46a) are found in both 383 

vertebrates. This genetic similarity is reasonable; however, performing similar cell 384 

isolation technique and bioinformatic analysis in both species would have likely 385 

increased the list of shared Hcrt-neuron–specific genes. Accumulated data on 386 

mammals and zebrafish suggest that the Hcrt neurons are not a homogenous 387 

population (27,34). Indeed, our co-localization studies showed a diversity of spatial 388 

gene expression in Hcrt neurons, varying from partial to complete overlapping with 389 

hcrt. Thus, the molecular signature suggests that these neurons are divided into 390 

subpopulations that may cope with the wide variety of functions of Hcrt neurons. The 391 

development and diverse functions of Hcrt neuron subpopulations are predicted to 392 

be regulated by Hcrt-neuron–expressed TFs, which target an ensemble of Hcrt- 393 

neuron–specific genes. 394 

The role of the isolated Hcrt-neuron–specific genes is diverse. Large arrays of 395 

genes are involved in the regulation of metabolism, endocrine systems, synaptic 396 

function, neurogenesis, reward, wake, and sleep (Figure 2–source data 1). These 397 

functions are correlated with the diverse role of Hcrt neurons. A group of genes 398 

includes metabolic and endocrine genes, such as the protein tyrosine phosphatase 399 

receptor (ptprn), which is implicated in insulin regulation (72,73), and the 400 

steroidogenic acute regulatory protein (star), which regulates the production 401 

of steroid hormones from cholesterol in the mitochondria (74–76). Another gene 402 
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involved in metabolism is elovl7b, which regulates fatty acid metabolism and energy 403 

homeostasis. This gene has been linked to lipodystrophy, obesity, and other 404 

metabolic disturbances (77,78). These metabolic genes are likely part of the 405 

mechanism that regulates feeding and obesity. Thus, in addition to hcrt, an 406 

imbalance of the fatty acid and glucose-regulating genes and pathways may 407 

contribute to the metabolism-related symptoms of narcoleptic patients. 408 

An array of Hcrt-neuron–specific genes are involved in neurogenesis and synaptic 409 

plasticity. For instance, the synaptic vesicle protein synaptotagmin X (syt10), which 410 

is involved in vesicular trafficking and Ca(2+)-dependent exocytosis (79,80). In 411 

addition, the voltage-dependent calcium-channel (cacgn4) gene regulates the 412 

biophysical properties of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 413 

(AMPA) receptors (81) and secretogranin II (scg2) encodes to a secretory protein 414 

and mediates the packaging and sorting of neuropeptides into secretory vesicles 415 

(82,83). Additional examples include the denndbl, which is involved in axon 416 

guidance, synaptic plasticity, and synaptic vesicle exocytosis (84), and netrin G1 417 

(ntng1), which is part of the mechanism that regulates axon guidance during 418 

development (85,86). Altogether, these genes are likely to play a key role in the 419 

mechanism that regulates neuritic processes, synaptic plasticity and activity in Hcrt 420 

neurons.  421 

In addition to annotated genes, the RNA profiling also revealed a set of long, non- 422 

coding RNA (lncRNAs) enriched in Hcrt neurons. lncRNAs regulate gene 423 

transcription and expression via various molecular mechanisms. Several studies 424 

show that lncRNAs regulate the expression of protein-coding genes, with their 425 

genomic loci adjacent to the locus of the specific lncRNA (54,87). Supporting these 426 



19 
 

observations, among the 16 lncRNAs that were enriched in Hcrt neurons, several 427 

were located in the genome next to the Hcrt-neuron–specific genes. For instance, 428 

the lncRNA cuff23873 is placed between the genes hacl1 and ankrd28 while 429 

si:dkey-58b18.8 is located in the intergenic region between pim2 and rpp40. Thus, 430 

these results suggest that Hcrt-neuron–specific lncRNAs regulate transcriptional and 431 

post-transcriptional processes of Hcrt-neuron–specific genes. 432 

The identification of hundreds of Hcrt-neuron–specific candidate genes enabled us 433 

to predict the TFs that regulate the expression of these genes. We found a 434 

significant enrichment of TFs, which regulate metabolism, sleep, and other 435 

physiological processes (Figure 5). For example, the hepatic nuclear factor 1 436 

homeobox (hnf1) regulates the expression of genes involved in lipid and glucose 437 

transport (62). In the Hcrt neurons, it was expected to regulate 35 out of the 48 Hcrt- 438 

neuron–specific genes (Figure 5), including five metabolic genes (soat2, f2rl1, scg2, 439 

grpr, and elovl7b). Another key TF is the peroxisome proliferator-activated receptor 440 

alpha (ppara), which plays a role in lipid metabolism and satiety (58,59). In the Hcrt 441 

neurons, this TF is expected to regulate the transcription of 33 Hcrt-neuron–specific 442 

genes, such as ptprn, soat2, f2rl1, scg2, and grpr, which are associated with the 443 

balancing of metabolism. Notably, the TF ap1, which is associated with sleep 444 

induction (64), is expected to be a regulator of 13 Hcrt-neuron–specific genes, 445 

including lhx9, which regulates sleep (34). Intriguingly, ap1 can also regulate the 446 

expression of Hcrt-neuron–specific synaptic genes, such as cacgn4, nos1, and 447 

dennd1b. Since sleep regulates synaptic plasticity in Hcrt axons (28), ap1 might 448 

mediate the molecular mechanism that links sleep with synaptic plasticity in Hcrt 449 

neurons.  450 



20 
 

The different players that are expressed in Hcrt neurons modulate the diverse roles 451 

of the neurons; however, these functions are also mediated by other hypothalamic 452 

neuronal networks. Aside from the Hcrt-neuron–specific genes, we identified three 453 

transcripts, cuff8731, npvf, and npffr1, which are expressed in cells located adjacent 454 

to Hcrt neurons. The neuropeptide VF precursor (npvf) and its receptor (npffr1) 455 

regulate nociception, anxiety, learning, and memory (88). The NPVF/NPFFR1 456 

system also controls pain and analgesia through interactions with the opioid system 457 

(88). The opioid system is formed, among others, by Nociceptin that forms the 458 

nociceptin/orphanin FQ (N/OFQ) system. This system makes synaptic contacts 459 

with Hcrt neurons, inhibiting their activity via pre- and post-synaptic mechanisms. 460 

The nociceptin/orphanin FQ (N/OFQ) system also exerts diverse actions in the 461 

hypothalamic–pituitary–adrenal (HPA) axis, and is implicated in the neurobiological 462 

control of stress and associated adaptive behaviors (89). More specifically, Hcrt 463 

neurons are essential in the generation of stress-induced analgesia (SIA), and 464 

N/OFQ blocks SIA via inhibition of Hcrt neuron activity (90). Altogether, 465 

NPVF/NPFFR and Hcrt neurons may interact in the hypothalamus to regulate 466 

morphine- and stress-induced analgesia.  467 

Among the candidate Hcrt-neuron–specific genes, we studied the role of kcnh4a, 468 

which is located adjacent to hcrt in the genome and is expressed in all Hcrt neurons. 469 

We found that sleep time, sleep/wake transitions, and sleep-bout length are 470 

decreased in kcnh4a-/- larvae during the night. Since potassium voltage-gated 471 

channels repolarize the cell membrane (65–67), loss of kcnh4a may reduce 472 

potassium efflux and induce repetitive hyperpolarization, and, ultimately, nighttime 473 

wakefulness. Supporting this role, the ether-a-go-go-gene–related (ERG) potassium 474 

channel blockers selectively increased waking activity at night in zebrafish (91). The 475 
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importance of potassium channels for sleep regulation has also been demonstrated 476 

in flies. Genetic screen of fly mutants revealed the short sleeper shaker mutant. The 477 

shaker gene encodes a voltage-dependent potassium channel and regulates sleep 478 

need and efficiency (92). Notably, loss of the shaker and kcnh4a potassium 479 

channels similarly affects nighttime sleep, while daytime sleep is unaffected in 480 

kcnh4a-/- larvae. In mice, loss of the voltage-dependent potassium channel Kcna2 481 

decreases non-rapid-eye-movement (NREM) sleep and increases wakefulness (93). 482 

These findings suggest that sleep is regulated by neuronal-circuit–specific 483 

potassium channels in flies, zebrafish, and mammals. According to this model, in 484 

zebrafish, the presence of Kcnh4a in the excitatory Hcrt neurons suggests that 485 

Kcnh4a regulates their activity and, ultimately, sleep and wake. In kcnh4a-/- larvae, 486 

the absence of Kcnh4a may cause hyperexcitability of the Hcrt neurons that induces 487 

the activity of downstream arousal-promoting targets, such as the paraventricular 488 

thalamic nucleus (94) and the locus coeruleus (95). However, since the expression 489 

of Kcnh4a is not restricted to Hcrt neurons and its effect on firing rates in specific 490 

neuronal population is not clear, further neurophysiological studies are required to 491 

link Kcnh4a, neuronal activity, sleep and wakefulness.   492 

The Hcrt transcriptome identified Kcnh4a as a sleep regulator and provides a 493 

platform for future studies on the molecular mechanism that regulates Hcrt-neuron– 494 

dependent physiological processes, such as feeding and sleep-wake cycles. In 495 

addition, it may also help to identify Hcrt-neuron–specific antigens that trigger the 496 

autoimmune response, leading to the specific elimination of Hcrt neurons in 497 

narcolepsy (96). Since the transparent zebrafish offer a wide array of tools to 498 

manipulate genes and visualize neuronal-circuit activity in live animals, a future 499 

combination of CRISPR-mediated mutants, genetically encoded Ca+2 indicators, and 500 
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optogenetic tools are expected to elucidate the functional role of the Hcrt-neuron– 501 

specific genes in a neuronal-circuit–specific manner. These experiments will 502 

facilitate our understanding of the mechanism controlling the multifunctional Hcrt 503 

neurons. 504 

 505 

Methods 506 

Fish Maintenance. The hcrt:EGFP, kcnh4a-/-, kcnh4a+/-, kcnh4a+/+, and WT fish 507 

were kept in a fish facility under a 14-h light/10-h dark cycle (LD) at 28oC (48) under 508 

optimal maintenance conditions, in accordance with the animal protocol approved by 509 

the Bar-Ilan University Bioethics Committee. Larvae were generated by paired 510 

mating, and raised in incubators and larvae water systems (48) under LD.  511 

 512 

FAC-sorting. The heads of 7 dpf hcrt:EGFP, α-tubulin:EGFP-injected, and WT  513 

larvae (60 larvae per group) were collected in a 2-ml tube. Cells were then 514 

dissociated using the Papain Dissociation System (Worthington Biochemical 515 

Corporation, Lakewood, NJ) according to the manufacturer’s protocol. The cells 516 

were filtered with a 70-μm cell strainer (BD Transduction Laboratories, San Jose, 517 

CA) and washed twice with cold phosphate-buffered saline (PBS). High-speed 518 

FACS was performed using an LSRII FACS machine (BD, Bioscience, San Jose, 519 

CA). A two-gate FACS technique was used to select only EGFP+ cells from non- 520 

fluorescent and auto-fluorescent cells. The EGFP+ cells were differentiated using 521 

SSC-A and FSC-A strategies. As a control, two additional groups of cells were 522 

sorted:  the first group contained only EGFP+ cells derived from the heads of larvae 523 

expressing α-tubulin:EGFP, and the second group contained only EGFP- cells 524 
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derived from WT larvae. Then, to separate the EFGP+ cells from the EGFP- cells, 525 

PE-Cy5-A and GFP-A filters were applied. The cells were collected into a 96-well 526 

sterile plate filled with the first RNA purification buffer from the RNeasy Mini Kit 527 

(Qiagen, Redwood City, CA). The samples were stored at -80oC until the RNA was 528 

purified. Three independent FACS experiments were performed, yielding three 529 

samples of EGFP+ cells (group 1) and three samples of EGFP- cells (group 2). Each 530 

sample contained 300 sorted cells.  531 

 532 

RNA extraction. Six samples (three EGFP+ and three EGFP-) were used for total 533 

RNA extraction using the RNeasy Mini Kit (Qiagen, Redwood City, CA) according to 534 

manufacturer’s protocol. Additionally, total RNA from six samples of the whole head 535 

of WT larvae (group 3) was purified using the same kit. Each sample contained 60 536 

heads. The quality and quantity of each RNA sample were assessed by Agilent's 537 

2100 Bioanalyzer 6000 Pico Kit (Agilent Technologies, Santa Clara, CA).  538 

 539 

cDNA synthesis and amplification. RNA of group 1 and 2 (Figure 1I) was 540 

amplified using the Ovation® RNA-Seq System V2 (NuGEN, San Carlos, CA). 541 

Before amplification, all samples were lyophilized using a SpeedVac instrument and 542 

then suspended in 5 μl of nuclease-free water. The cDNAs were fragmented using a 543 

Bioruptor instrument with three 10-sec (‘on’) cycles of sonication interrupted by 90- 544 

sec pause periods (‘off’). The cDNAs of group 3 (Figure 1I) was synthesized 545 

according to standard procedures. The cDNAs were quantified using the Nanodrop 546 

and Bioanalyzer DNA 1000 Chip. The libraries were loaded on a High Sensitivity 547 

ChIP and quantified on a Qubit instrument. 548 

 549 



24 
 

Illumina sequencing and bioinformatic analysis. Illumina TruSeq protocol was 550 

used to prepare libraries from RNA samples. Twelve libraries (group 1, 2, 3, Figure 551 

1I) were run on 2 lanes of an Illumina HiSeq2000 machine using the multiplexing 552 

strategy of the TruSeq protocol (Institute of Applied Genomics, Udine, Italy). An 553 

average of 24 million reads were obtained from EGFP+ RNA, 22 million reads from 554 

EGFP- RNA, and 175 million reads from the whole head RNA 555 

(http://www.ncbi.nlm.nih.gov/sra, PRJNA283169). Because of the difference in the 556 

amounts of RNA and the amplification process, the reads were 2×50 base pairs 557 

for the EGFP+ and EGFP- groups, and 2×100 for whole larva head groups. The 558 

RNA-seq data from the replicates were unified, obtaining three groups for further 559 

analysis: EGFP+, EGFP-, and whole head groups. Since the amount of cells and 560 

RNA was very low, this strategy increased the read cover for each gene and 561 

resolved potential amplification bias. Cufflinks and Cuffdiffs 562 

(http://cufflinks.cbcb.umd.edu/) (97,98) were used to calculate gene-expression 563 

levels and identify differentially expressed transcripts (statistical analysis is 564 

described below). The reads were mapped to the zebrafish genome (Zv9), and raw 565 

read counts were normalized to TPM. Initially, a gene was considered to be 566 

preferentially expressed in the Hcrt cells if its normalized expression level was at 567 

least 100 TPM in EGFP+ cells and 7-fold higher than the higher of the normalized 568 

expression levels estimated in the two controls. For reference, the hcrt, which was 569 

expressed at a level above 300 TPM in the EGFP+ sample and below 10 TPM in the 570 

control samples, was used for aligning the reads against the zebrafish genome, 571 

allowing only uniquely aligned reads. In order to enlarge the list of enriched 572 

transcripts in Hcrt neurons, relaxed parameters were set and the new requirements 573 
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were 10 TPM and 3.6 times higher abundance in EGFP+ cells compared with the 574 

control groups. 575 

 576 

Gene ontology analysis and prediction of transcription factors. Following 577 

analysis of the RNA-seq data, transcripts that were enriched in Hcrt neurons were 578 

either assigned to an annotated zebrafish gene or regarded as novel transcripts. To 579 

further characterize the annotated genes, they were assigned a human ortholog 580 

using the 'Non-Zebrafish RefSeq Genes' or the 'Human Proteins Mapped by 581 

Chained tBLASTn' tracks on the UCSC genome browser (Zv9/danRer7 582 

assembly; http://genome.ucsc.edu/). To find over-represented molecular functions, 583 

human orthologs were used as input to DAVID annotation. We focused on over- 584 

represented TFs. The DAVID default human-gene background was used. All the 585 

significantly enriched (Benjamini-Hochberg adjusted p<0.05) TFs are presented in 586 

Figure 5–source data 1. The conserved location of transcription factor binding sites 587 

was identified in mammalian alignments. A binding site was considered to be 588 

conserved across the alignment if its score met the threshold score for its binding 589 

matrix. The score and threshold were calculated using the Transfac Matrix Database 590 

(v7.0) created by Biobase (Waltham, MA).  591 

 592 

Real-time quantitative PCR. The expression levels of kcnh4a mRNA were 593 

determined using quantitative real-time PCR. Total mRNA was extracted from 594 

kcnh4a-/- (n=9 batches of 8 larvae) and kcnh4a+/+ (n=5 batches of 8 larvae) 6 dpf 595 

larvae, using the RNeasy Protect Mini Kit (Qiagen, Redwood City, CA) and 596 

according to the manufacturer's instructions. A similar amount of mRNA (1µg) was 597 
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reverse-transcribed using Oligo(dT) oligos and SuperScript III reverse transcriptase 598 

(Invitrogen, Carlsbad, CA) according to the manufacturer's protocol. Transcript 599 

levels were determined by Applied Biosystems 7900HT Fast Real-Time PCR 600 

System using the Quanta SYBR FAST qPCR Kit (Quanta Biosciences, 601 

Gaithersburg, MD). Ef1a was used as reference gene (99) and ΔΔCT analysis was 602 

performed (100). 603 

 604 

PCR amplification and cloning of candidate genes. To prepare probes for whole- 605 

mount ISH experiments, the full coding sequences of the following genes were 606 

amplified: hcrt (NM_001077392.2), star (NM_131663.1), dennd1b 607 

(XM_009296374.1), kcnh4a (KR733682), fam46a (XM_005157860.2), npvf 608 

(NM_001082949.1), npffr (NM_001171697.1), zgc:171844 (NM_001127478.1), 609 

hmx3 (NM_131634.1), lhx9 (NM_001017710.1), si:dkey-58b18.8 610 

(ENSDARG00000095761), elovl7b (NM_199778.1), gad67 (NM_194419.1), vglut2b 611 

(NM_001009982.1), hsf1 (NM_131600.1) and cuff23873. All PCR products were 612 

cloned into a pCRII-TOPO vector (Invitrogen, Carlsbad, CA) and served as a 613 

template to transcribe digoxigenin-labeled antisense mRNA probes. 614 

 615 

In-situ hybridization. Larvae and adult brains were fixed in 4% paraformaldehyde 616 

over 48 h at 4ºC. All samples were then dehydrated in 100% methanol and stored at 617 

-20ºC. Before further treatment, brains and larvae were rehydrated in decreasing 618 

methanol concentrations. Adult brains were embedded in 2.5% agarose and 619 

sectioned with the Vibratome Series 1000 Sectioning System (Campden 620 

Instruments, Lafayette, IN). Transverse sections were then processed and stained 621 

as free-floating slices. ISH was performed following standard protocols. Digoxigenin- 622 
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and fluorescein-labeled antisense riboprobes were transcribed in vitro using RNA 623 

Labeling Kit SP6/T7 (Roche Diagnostics Corporation, Indianapolis, IN). Single probe 624 

ISH was revealed with colorimetric BM purple (Roche Diagnostics Corporation, 625 

Indianapolis, IN). Double probe fluorescent ISH was performed as described 626 

previously (101) 627 

 628 

Fluorescent ISH and immunofluorescence staining. ISH was performed as 629 

described above in hcrt:EGFP 2 dpf larvae and adults. The samples were revealed 630 

using Fast Red (Roche Diagnostics Corporation, Indianapolis, IN). All the 631 

procedures were based on standard protocols (101). After blocking, larvae and adult 632 

brain slices were incubated in primary rabbit anti-EGFP (Santa Cruz Biotechnology, 633 

Santa Cruz, CA), diluted 1:250. Anti-EGFP antibodies were detected with a 634 

secondary goat anti-rabbit Alexa Fluor 488 IgG (H+L) antibody (2 mg/mL, A-11034, 635 

Invitrogen, Carlsbad, CA). All experiments were repeated in 3-5 larvae and adult 636 

sections. 637 

 638 

Imaging. An epifluorescence stereomicroscope (Leica M165FC) was used to 639 

visualize live larvae expressing EGFP and fluorescent-fixed larvae and adult brain 640 

sections. Pictures were taken using the Leica Application Suite imaging software, 641 

version 3.7 (Leica, Wetzlar, Germany). In confocal imaging of fixed embryos, the 642 

samples were mounted on slides. In live imaging of hcrt:EGFP larvae, the larvae 643 

were mounted in low-melting–point 1% agarose. Confocal imaging was performed 644 

using a Zeiss LSM710 upright confocal microscope (Zeiss, Oberkochen, Germany). 645 

All images were processed using ImageJ (National Institutes of Health, Bethesda, 646 

MD). 647 
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 648 

Establishment of a kcnh4a mutant (kcnh4a-/-) line. The CRISPR system (102) 649 

was used to establish the kcnh4a-/- line. The Cas9 (Addgene plasmid no. 42251) 650 

and sgRNA (Addgene plasmid no. DR274) zebrafish expression plasmids were 651 

obtained from Addgene (Cambridge, MA). In order to prepare the sgRNA, two 652 

kcnh4a-specific oligos were designed to match the target site 653 

(ACAACGTCTGCTTCTCCACCC) in exon 5. These oligos were denatured at 95oC 654 

for 5 min, then gradually cooled down to room temperature and kept at 4oC. Before 655 

cloning, annealing of the oligos was confirmed in 2% agarose gel. The annealed 656 

oligos were cloned into the DR274 plasmid between the BsaI restriction sites and 657 

transformed into bacteria, which was selected by standard sequencing. In order to 658 

synthesize the specific sgRNA, the DR274 plasmid containing the annealed oligos 659 

was linearized with the restriction enzyme DraI, and cleaned using the standard 660 

phenol-chloroform procedure, followed by purification by the PureLink PCR 661 

Purification Kit (#K31000, Life Technologies, Carlsbad, CA). The sgRNA was 662 

synthesized using the T7 High Yield RNA Synthesis Kit (New England Biolabs, 663 

Hitchin, UK). In order to prepare Cas9 mRNA, the zebrafish Cas9 vector was 664 

linearized by AgeI, and mRNA was synthesized using the mMESSAGE mMACHINE 665 

T7 Kit (Life Technologies, Carlsbad, CA). 666 

One-cell–stage WT zebrafish embryos were microinjected with mixed Cas9 mRNA 667 

(300 ng/µl) and transcribed sgRNA (12.5 ng/µl). To test the efficiency of the CRISPR 668 

system, ten 1-dpf embryos were screened for kcnh4a-specific mutation (as 669 

described below). We found that 60% of the embryos carried the mutation. The 670 

founder (F0) mosaic embryos were raised to adulthood and outcrossed with WT fish 671 

in order to identify F1 mutant fish. Single F1 heterozygous fish, which carry a 14 bp 672 
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deletion mutation in the kcnh4a target site (Figure 6D), was selected and outcrossed 673 

with WT fish. To decrease the risk for off-target mutations, heterozygous F2 and 674 

then F3 fish were outcrossed with WT fish. In all experiments, heterozygous F4 fish 675 

were intercrossed, and the assays were performed on their progeny.  676 

 677 

Genotyping. Genotyping of the kcnh4a-/- zebrafish was conducted by extracting 678 

genomic DNA from embryos and larvae or by the tail clipping of adult fish using the 679 

KAPA Express Extract Kit (Kapa Biosystems Inc., Boston, MA) according to the 680 

manufacturer's instructions. Genomic DNA was then amplified by PCR using the 681 

following primers: forward- 5'TTCATGTTTTCCACAGAATGTGTTTTCACA3' and 682 

reverse- 5'ACCGAGGATGAAGAGCATCTCCACAG3'. The PCR product was then 683 

run on 2% agarose gel, and heterozygous, homozygous, and WT fragments could 684 

be identified by their size (Figure 6D). To confirm the gel pattern, selected PCR 685 

products were sequenced. 686 

 687 

Behavioral assays. The kcnh4a+/− adult zebrafish were intercrossed and their 688 

progeny were kept under LD cycle. At 5 dpf, the larvae were individually placed in 689 

48-well plates. At 6 dpf, larva-containing plates were placed in the Noldus 690 

DanioVision tracking system (Noldus Information Technology, Wageningen, 691 

Netherlands) and acclimated for one hour prior to behavioral recording. Recording 692 

was performed using the EthoVision XT 9 software (Noldus Information Technology, 693 

Wageningen, Netherlands), as previously described (48). Light intensity in the 694 

tracking system was 70 LUX for all experiments. To monitor rhythmic behavior 695 

during a daily cycle, larvae were maintained under the LD cycle, which was similar 696 

to the LD cycle prior to the experiment. Data analyses of total locomotor activity, 697 
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sleep time, sleep/wake transitions, and sleep-bout length were performed according 698 

to the parameters previously described (48). Following each behavioral experiment, 699 

all larvae were subject to genotyping (as described above). SD was performed by 700 

randomized manual tapping on a petri dish that contained 6 dpf larvae. Following 701 

the SD, sleep time was monitored in sleep-deprived and control larvae (n=13 for 702 

each treatment) using behavioral systems. 703 

 704 

Statistical analysis. In the RNA-seq data, statistically significant differences 705 

between the number of reads aligned to each gene (the expression profile) in the 706 

different tested conditions, without unifying the replicates, were identified as 707 

previously described (103,104). Briefly, the expression profiles were normalized 708 

using a variation of the trimmed mean of M-values normalization method (104,105). 709 

Subsequently, we searched for expression differences between the EGFP+ and the 710 

control samples that cannot be explained by Poisson noise with p < 0.01 and 711 

Bonferroni correction for multiple testing (104). Notably, the analysis takes into 712 

account technical biases that can cause the variance to be larger than that of naive 713 

Poisson statistics (104). Only genes with average expression >15 (raw reads) in the 714 

EGFP+ samples were analyzed, and only genes with fold change higher than 3.6 are 715 

shown in Figure 2–source data 1. 716 

In the behavioral experiments, statistical analysis was performed using SAS v9.3 717 

software (SAS Institute, Cary, NC). Locomotor activity, sleep time, sleep-bout 718 

length, and sleep/wake transitions were analyzed with repeated measures of 719 

ANOVA (SAS PROC MIXED), where each was modeled as a function of genotype 720 

(kcnh4a-/-, kcnh4a+/-, kcnh4a+/+), time (24 h), and the genotype by time interaction 721 

term. LS means (model estimated means) differences between the genotype groups 722 
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per time point were estimated from the model interaction terms and are presented 723 

with respective levels of significance and 95% confidence intervals. These were 724 

used to compare between genotypes per time point in locomotor activity and sleep 725 

experiments. 726 
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Figure legends 1043 

 1044 

Figure 1. Isolation of Hcrt neurons, RNA-seq, and experimental design. (A) 1045 

Dorsal view of 6 dpf hcrt:EGFP larvae. (B) Dorsal view of the hypothalamus region 1046 

of 6 dpf hcrt:EGFP larvae expressing EGFP in Hcrt neurons. (C) Cell suspension 1047 

from the whole head of 6 dpf hcrt:EGFP larvae. (D-G) The cells were sorted based 1048 

on size and fluorescence intensity. The fluorescence thresholds (gray curve) were 1049 

set based on larvae expressing EGFP under the control of α-tubulin promoter 1050 

(positive control) (E) and WT larvae (negative control) (F). Positive EGFP cells 1051 

(EGFP+) sorted from hcrt:EGFP larvae are marked with gray shade (G). (H) PCR 1052 

amplification of hcrt and egfp was performed on cDNA synthesized from EGFP+ and 1053 

EGFP- cells sorted from hcrt:EGFP larvae. (I) FAC-sorting yielded two groups of 1054 

cells: Group I containing EGFP+ and Group II containing EGFP- cells. A third group 1055 

contained cells from whole head of WT larvae. The cDNA of groups I and II was 1056 

amplified and the three groups were then subjected to RNA-seq and bioinformatic 1057 

analysis to obtain a list of Hcrt-neuron–enriched genes. 1058 

 1059 

Figure 2. The expression pattern of selected candidate Hcrt-neuron–specific 1060 

genes. (A) Table presenting the top 20 Hcrt-enriched transcripts. (B-M) Dorsal view 1061 

of whole-mount ISH-stained 2 dpf WT larvae. Based on the RNA-seq and the 1062 

bioinformatic analysis, the expression pattern of selected candidate Hcrt-neuron– 1063 

specific genes was determined. The expression pattern of hcrt (B) was used for 1064 

comparison. 1065 

 1066 
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Figure 3. Selected candidate genes are expressed in Hcrt neurons. (A-I’’) 1067 

Double fluorescent staining of the candidate genes (red) and EGFP (green) was 1068 

performed in 2 dpf hcrt:EGFP larvae using whole-mount ISH and 1069 

immunofluorescence, respectively. White arrows indicate representative co- 1070 

expressing cells. All confocal images show single plane view of 0.5 µM width. (J-M’’) 1071 

Double fluorescent ISH and immunofluorescence experiments in brain sections of 1072 

hcrt:EGFP adult zebrafish. Co-localization of candidate genes (red) and EGFP 1073 

(green) in Hcrt neurons is shown. All images show single plane view of 0.5 µM 1074 

width. 1075 

 1076 

Figure 4. Candidate genes are expressed in cell populations located adjacent 1077 

to Hcrt neurons. (A-I’’) Fluorescent ISH and immunofluorescence experiments in 2 1078 

dpf larvae and adult hcrt:EGFP zebrafish showing three candidate genes that are 1079 

expressed adjacently to Hcrt neurons within the hypothalamus. (A-A’’, D-D’’, G-G’’) 1080 

Dorsal view of the heads showing the whole expression pattern of the genes in 40 1081 

µM z-stack. (B-B’’, E-E’’, H-H’’) Dorsal view of single 0.5 µM plane in 2 dpf larvae. 1082 

(C-C’’, F-F’’, I-I’’) Dorsal view of single 0.5 µM plane in adult brain section. 1083 

 1084 

Figure 5.  Predicted TFs that regulate the expression of Hcrt-neuron–specific 1085 

transcripts. (A) TFs with a p<0.005 and their target Hcrt-neuron–specific genes. 1086 

For each of these transcription factors, a combined score for each gene is 1087 

calculated according to all of the predicted binding sites in its promoter. Therefore, a 1088 

gene with an overrepresented binding site of a TF will have a high score for that TF 1089 

and a lower p value. (B-C’’) Double fluorescent ISH of hsf1 and 1090 

immunofluorescence staining of EGFP in hcrt:EGFP adult brain section. Single 1091 
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plane (0.5 µM width) view of the Hcrt-neuron region (C-C’’). Arrows mark 1092 

representative EGFP and hsf1 co-expressing cell. 1093 

 1094 

Figure 6. The genomic location, phylogenetic reconstruction and structure of 1095 

kcnh4a, and the generation of kcnh4a-/- zebrafish. (A) Synteny analysis shows 1096 

similar genomic context of hcrt in zebrafish and mammals. Notably, kcnh4a is 1097 

located a few kbs downstream to hcrt in zebrafish and mammals. (B) The 16-exon 1098 

kcnh4a gene (black box = exon, white box = UTR) encodes for a voltage-gated 1099 

potassium channel that includes an N-terminal chain (black bar), pore and voltage- 1100 

sensing domains (S1-6, grey bar), and the C-terminal chain (red bar). (C) A 1101 

cladogram-style phylogenetic tree depicting the evolutionary conservation of Kcnh4a 1102 

protein among vertebrates. The tree shows topography as well as distance indicated 1103 

by the branch support values above corresponding branches. (D) Generation of 1104 

CRISPR-mediated kcnh4a-/- zebrafish. A 14 bp deletion was introduced in exon 5 1105 

that encodes to the S2 domain. A short mutant allele was visible on agarose gel. (E) 1106 

Quantitative reverse transcription PCR shows reduction of 59% in the expression 1107 

levels of kcnh4a mRNA in kcnh4a-/- 6 dpf larvae (p < 0.001). 1108 

 1109 

Figure 7. Sleep time and quality are reduced in kcnh4a-/- larvae during the 1110 

night. (A) The locomotor activity of kcnh4a-/- (n=85), kcnh4a+/- (n=208), and 1111 

kcnh4a+/+ (n=98) is shown. kcnh4a-/- larvae exhibit increased locomotor activity 1112 

compared with kcnh4a+/- and kcnh4a+/+ under LD conditions. (B) kcnh4a-/- larvae 1113 

showed a significant reduction in sleep time compared with kcnh4a+/- and 1114 

kcnh4a+/+ during the night. Bar charts represent the average total locomotor activity 1115 

(A’) and sleep time (B’) for each genotype. Values are represented as means±SEM. 1116 
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(C, D) The number of sleep/wake transitions (C) and the length of sleep bout (D) are 1117 

decreased in kcnh4a-/- larvae during the night. Recording of locomotor activity and 1118 

sleep was performed in 6 dpf larvae continuously during 24 h under a 14 h light/10 h 1119 

dark cycle (white and black bars represent light and dark periods, respectively, 1120 

*p<0.05, **p<0.01, ***p<0.0001, with repeated measures of ANOVA). 1121 

 1122 

Figure 2–source data 1. Hcrt-neuron enriched transcripts. All the genes 1123 

detected have p < 0.01 with Bonferroni correction for multiple testing (Methods).  1124 

 1125 

Figure 5–source data 1. Predicted Hcrt-neuron enriched transcription factors and 1126 

their target genes. 1127 

 1128 

Figure 6–figure supplement 1. Hypothalamic kcnh4a-expressing neurons are 1129 

glutamatergic. Double in-situ hybridization against kcnh4a (red, A, B) and gad67 1130 

(green, A’), or vglut2b (green, B’). All pictures are on a single optical plane of 0.5 1131 

µm. 1132 

 1133 

Figure 7–figure supplement 1. Sleep time is increased following sleep 1134 

deprivation (SD). (A) At 6dpf, larvae were sleep deprived for 6 hours during the 1135 

night under constant dark conditions (DD) and sleep time was monitored in the 1136 

following nine hours.  (B, C) Sleep was recovered in sleep-deprived larvae. 1137 

Statistical comparisons were performed using Student’s t-tests (*p<0.05). Dark and 1138 

gray horizontal bars represent night and subjective day, respectively. 1139 
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A. Table1: Hcrt-neuron enriched transcripts
Transcript name Transcript ID Fold change
npvf ENSDART00000052627 362.4
hcrt ENSDART00000104549 54.2

28.4
27.9

kcnh4a ENSDART00000090633 20.2
15.1

ENSDART00000010028 14.5
elovl7b ENSDART00000014385 13.5
cuff.34876 10.8
cuff.57637 10.5
star ENSDART00000016225 10.5
adra1a ENSDART00000030938 10.2
grpr ENSDART00000079150 9.5

9.3
si:dkey-58b18.8 ENSDART00000144655 8.4
dennd1b ENSDART00000105614 8.0
cuff.77494 7.9

ENSDART00000135731 7.5
cuff.77484 7.3
fam46a ENSDART00000054071 7.2
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