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Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this
process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA)
maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the
potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNA–
mRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature
disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare.
Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were
able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm
successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which
are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression
assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets
of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread.

[Supplemental material is available for this article.]

A-to-I editing is catalyzed by enzymes of the adenosine deaminase

that act on the RNA (ADAR) family, and post-transcriptionally

changes adenosine to inosine, the latter being treated by cell ma-

chinery similar to guanosine. This modification results in protein

recoding of tens of genes (Nishikura 2010), shown in some cases to

translate to modified biophysiological properties with critical im-

plication on brain function (Sommer et al. 1991). However, only

a minute fraction of A-to-I modifications results in protein recod-

ing, whereas most targets of ADARs reside within the noncoding

parts of the transcriptome (Li et al. 2009; Nishikura 2010).

The primary transcript of a miRNA gene (pri-miRNA) folds

into a hairpin structure and undergoes cleavage by the nuclear en-

zyme Drosha, giving a 60- to 70-nucleotide (nt) precursor miRNA

(pre-miRNA). The pre-miRNA is exported from the nucleus by

Exportin-5 and processed by the cytoplasmtic enzyme Dicer into 19-

to 25-nt imperfect double-stranded RNA (dsRNA) (Bartel 2004). One

or both strands of the duplex may serve as the functional mature

miRNA. By binding to partially complementary targets located in

the 39 untranslated region of specific mRNAs, mature miRNAs block

the translation or guide the degradation of target mRNAs. Bases 2–8

at the 59 end of the mature miRNA were found to be critical for the

target recognition (Bartel 2004). By regulating protein expression,

miRNAs are involved in many cellular and physiological processes,

including numerous pathological conditions (Chang et al. 2008). As

ADARs binds to dsRNA, they may act on the double-strand forma-

tion of pri-miRNA (Yang et al. 2006). A-to-I editing of pri-miRNA can

affect the processing of the pri-miRNA to pre-miRNA or the pro-

cessing of the pre-miRNA to mature miRNA (Yang et al. 2006).

Pri-miRNA editing events may lead to the expression of edited

mature miRNAs. If the alterations are in the recognition site, known as

the ‘‘seed’’ region, a change in the target genes is expected. A striking

example is mouse miR-376, in which editing in the recognition site

alters the target specificity of the miRNA and profoundly affects cel-

lular processes (Kawahara et al. 2007). A-to-I editing events that

change target specificity of miRNAs clearly add another layer of

complexity to gene regulation pathways. It is therefore of interest to

study the extent of this phenomenon. Initial reports, based on low-

throughput experiments, estimated that it may be widespread

(Kawahara et al. 2008). Proper utilization of next-generation se-

quencing (NGS) has the potential to unravel the full extent of A-to-I

editing in miRNAs. Unfortunately, so far NGS-based experiments

resulted in puzzling results; many types of DNA-to-reads mismatches,

including adenosine-to-guanosine (A-to-G) (which may be caused by

A-to-I editing), were detected (Landgraf et al. 2007; Morin et al. 2008;

Ebhardt et al. 2009; Martı́ et al. 2010; Pantano et al. 2010; Joyce et al.

2011). These findings could mean that miRNAs undergo many kinds

of biological modifications, including A-to-I editing. However,

one must also consider technical explanations for the variety of

mismatches observed. Indeed, de Hoon et al. (2010) have reported
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technical problems in the analysis of NGS

data sets that may result in false detection

of miRNA modification events. They have

concluded that the editing events in ma-

ture miRNAs are rare (de Hoon et al. 2010).

Here we set out to comprehensively iden-

tify A-to-I editing in mature miRNAs using

NGS followed by bioinformatics analysis.

In contrast to previous reports, we find a

clear A-to-I signal in mature miRNAs.

This work focuses on human brain

tissue for two main reasons: The first is

the obvious importance of unraveling

the scope of mature miRNAs editing in

this tissue, and second is the strong line

of evidence pointing toward high A-to-I

editing in human brain compared with

other organisms and tissues (Eisenberg et al.

2005; Paz-Yaacov et al. 2010).

Results

Sequencing of miRNAs from human
brain tissue

Sequencing of mature miRNAs has the po-

tential to unravel many kinds of sequence

modifications, including A-to-I editing, as

inosine (I) in the RNA leads to a guanosine

(G) in the sequencing output. Mature

miRNAs from human brain tissue (FirstChoice human brain ref-

erence RNA, Ambion) were sequenced using one lane of Illumina

GAIIx instrument (Methods). The following considerations were

taken into account in the sequencing data analysis: (1) The 39 end

of mature miRNAs undergoes large-scale RNA modifications in the

form of adenylation and uridylation (Burroughs et al. 2010).

Therefore, the last two bases of the sequencing read, which cor-

respond to the 39 end of the mature miRNA, were trimmed (Chiang

et al. 2010). (2) As demonstrated by de Hoon et al. (2010), cross-

mapping of sequencing reads can create many false alignments

that may be interpreted as sequence alterations. Therefore, we

have aligned all the trimmed reads against the human genome

using Bowtie (Langmead et al. 2009), demanding unique best hits

with up to one mismatch (Methods). Only reads that were aligned

to the genomic locations of known miRNAs were further used. (3)

Sequencing error hinders the discovery of editing sites. Thus, we

filtered mismatches with low-quality score. Then, the sequencing

error rate was estimated, and only sites with significant modifica-

tion, as determined by binomial cumulative distribution, were

recorded (Methods). (4) Known single nucleotide polymorphisms

(SNPs) sites were removed using the dbSNP data set (Sherry et al.

2001). The detection procedure is illustrated in Figure 1 (also see

Methods).

A clear A-to-I editing signal in human brain miRNAs

Overall, 19 statistically significant modification sites were detected

in 18 different miRNAs expressed in this sample (Table 1). Re-

markably, all of them were A-to-G modifications, suggesting that

they represent A-to-I editing rather than random sequencing or

alignment errors (Methods; Fig. 1; Levanon et al. 2004). Another

indication for the observed modifications being editing sites comes

from analysis of the sequence and structural motifs. As expected for

true A-to-I editing sites (Kleinberger and Eisenberg 2010), we find

enrichment of uridine (U) and depletion of G in the upstream nu-

cleotide position (12 U and zero G out of 19 sites). The nucleotide

opposing the editing site is typically cytidine (C) or U (17/19), and G

is overrepresented in the downstream nucleotide (eight of 19).

These sequence motifs are in accordance with the expected prop-

erties of true A-to-I editing sites (Fig. 2; Supplemental Tables 1, 2).

About half of the detected modifications are supported by the

literature, again pointing to the validity of the list (Table 1).

Moreover, out of the 12 experimentally validated and documented

editing sites in mature human miRNAs that were expressed in our

sample, six were identified (Methods; Supplemental Table 3), in-

dicating a satisfactory (but not perfect) detection power. It is also of

interest to compare our results with a recent report of editing in

mature miRNAs from the mouse brain (Chiang et al. 2010). Editing

in eight out of the 19 sites is conserved between the mouse and

human, including sites with relatively low editing levels (Table 1).

Surprisingly, the editing levels of human and mouse miRNAs are

comparable, and in some cases, the editing levels are in fact higher

in the mouse. This finding contrasts an earlier NGS-based report

claiming that editing in mature miRNAs is less common in mice

than in humans (Landgraf et al. 2007). This disagreement might be

attributed to the many sequence modifications (other than A-to-G)

observed in the previous report (Landgraf et al. 2007), suggesting

a higher false-positive rate.

In vitro overexpression experiments validate the in vivo data

The clear editing signal observed makes it reasonable to assume

that the novel A-to-G modification sites identified are due to A-to-I

editing. Nevertheless, we sought for direct validation of the pos-

Figure 1. A schematic representation of the procedure for identifying editing sites in mature miRNAs
using the brain sample data (for details, see Methods). In each one of the four steps (A–D), the total
number of mismatches of any type is given in absolute numbers (bar chart) and in relative proportions
(pie chart). (A) If the untrimmed reads are aligned against the known miRNA sequences, a strong signal
of adenylation and uridylation is observed. (B) After trimming the 39 end of the reads, A-to-G modifi-
cations become dominant. (C ) If the trimmed reads are aligned against the genome and not directly
against the miRNA sequences, the relative proportion of the A-to-G mismatches is enhanced as a result
of less cross-mapping. (D) After possible sequencing errors are removed by using binomial statistics, only
A-to-G modifications are observed.
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sibly novel editing sites. We note that direct Sanger sequencing is

inefficient for this task, due to editing levels being too low to be

detected (<2%) or miRNA in question being weakly expressed. A

primer extension assay might be able to differentiate changes in

the relative ratios of edited and nonedited microRNA species.

However, we have taken a more global approach and tested the

effect of ADAR and ADARB1 (also known as ADAR1 and ADAR2,

respectively) overexpression on the full miRNA editing profile in

human brain–originated U87 glioblastoma cell-line. Knockdown

experiments were not considered, due to the low editing levels in

this cell-line compared with the levels in brain tissues (Paz et al.

2007). We have used Illumina’s HiSeq2000 apparatus to perform

NGS of miRNAs from the control U87 cell-line and compared the

results to the ADAR and ADARB1 overexpression (Methods). We

hypothesized that some of the miRNAs that were detected as edited

in the brain tissue sequencing will also be detected as edited in the

cell-line overexpression experiments, if they are indeed expressed in

this cell-line. Overall, out of 18 miRNAs detected as being edited in

the brain tissue 12 miRNAs were expressed in the U87 cell-line. Im-

portantly, a third were indeed validated as ADAR or ADARB1 editing

targets in the cell-line overexpression experiments (Methods; Table

1), most of which were found to be ADARB1-dependent.

As ADARB1 overexpression seems to have a larger effect on

miRNA editing compared with ADAR in the U87 cell-line (Table 1),

we have repeated the ADARB1 overexpression experiment. This

time we used a different human brain–originated cell-line, the

U118 glioblastoma, and employed a stable ADARB1 transfection

assay (Methods). Illumina’s HiSeq2000 apparatus was again used to

perform NGS of miRNAs from control and ADARB1 overexpressing

U118 cell-lines (Methods). Strikingly, all the detected editing sites

in the U87 were also detected in the U118, demonstrating the ro-

bustness of our detection procedure. Three and 13 additional

mature miRNAs editing sites were identified in the U87 and the

U118 experiments, respectively, bringing the total number of

detected editing events in mature miRNAs to over 30 (Methods;

Supplemental Table 5). Note, however, that the sites detected only

in the cell-line overexpression samples should be treated with

caution as they may not be edited in human physiological con-

ditions. The validation process, for four novel human editing sites,

is illustrated in Figure 3.

A-to-I editing in miRNAs from the frontal lobe of individuals

As the human brain tissue described above was a pool of different

brain regions from multiple donors, it is of interest to examine the

profile of miRNA editing in a specific brain region of a single in-

dividual. Therefore, Illumina’s HiSeq2000 apparatus was used to

perform NGS of miRNAs from the frontal lobe of two individuals

(Methods). Again, a clear A-to-I editing signal was observed (Methods).

Fourteen statistically significant A-to-G modification sites were

Table 1. The statistically significant A-to-G modifications sites detected in mature miRNAs using the pooled human brain sample and the
human frontal lobe samples

miRNA Location P-valuea

Editing levels
in pooled

human
brain

Editing levels
in human

frontal lobe,
sample A

Editing levels
in human

frontal lobe,
sample B

Editing
levels in U87

control/ADAR
/ADARB1

Editing levels
in U118
control/
ADARB1

Editing levels
in mouse

brainb

let-7d Star position 5 7 3 10�10 1.2 0.7 N.S. N.S. N.S.
let-7e Star position 5 9 3 10�5 N.S. 1.7 N.S. N.S. N.S.
miR-27a Mature position 6 5 3 10�12 1.2 2.3 N.S. N.S. N.S.
miR-27b Mature position 4 1 3 10�12 0.4 N.S. N.S. N.S. N.S.
miR-99a Mature position 1c <1 3 10�16 5 1.2 1.4 0/0/0.8 0/17.3
miR-130a Mature position 2 2 3 10�11 0.7 N.S. N.S. N.S. 0/0.5
miR-151 3p mature position 3d 3 3 10�13e N.S. 0.6 1.7 N.S. 0.1/0.5 0.6–2.5g

miR-200b Mature position 5 5 3 10�6e N.S. 4.2 N.S. N.E. 0/7.3
miR-340 Star position 13 2 3 10�9 1.9 N.S. N.S. N.E. N.S.
miR-376b Mature position 6d 8 3 10�11 1.5 N.E. N.E. N.E. N.E. 50.1
miR-376b Mature position 13 1 3 10�14 1.8 N.E. N.E. N.E. N.E.
miR-376c Mature position 6d <1 3 10�16 8.5 N.S. N.S. N.E. N.E. 31.1
miR-376a-1 Star position 3d <1 3 10�16 18.9 N.S. N.S. N.E. N.E. 29.7
miR-379 Mature position 5d <1 3 10�16 10.2 14.3 N.S. N.E. N.E. 9.5
miR-381 Mature position 4 <1 3 10�16 6.3 3.3 1.7 0.6/3.5/0 N.E. 12.5
miR-411 Mature position 5d < 3 10�16 15.3 13.9 6.3 N.S. N.E. 23.9
miR-421 Mature position 7 2 3 10�7f N.S. N.S. 0.7 N.S. N.S.
miR-421 Mature position 14 1 3 10�5 1.8 1.0 0.9 0/0.4/1.1 0.5/16.9 5.4
miR-455 5p mature position 17 9 3 10�15 1.2 N.S. N.S. 0/0.4/3.2 0/19.2
miR-497 Mature position 2 <1 3 10�16 6.2 N.S. 2.7 N.S. 0/26.8 10.4
miR-539 Mature position 10 2 3 10�8 6.7 N.S. N.S. N.E. N.E.
miR-589 Star position 6 <1 3 10�16 70 74.1 N.E 1.9/0.4/1.4 0/9.5
miR-598 Mature position 2 2 3 10�5 0.2 N.S. N.S. N.S. N.S.
miR-641 Mature position 3 1 3 10�5e N.S. 3.6 13.5 N.S. N.S.

The editing levels in the in vitro ADAR overexpression experiments are also presented. The statistically significant modifications, as detected by our
analysis, are marked with bold. Sites in which the modifications were not statistically significant are marked by N.S. Note that frontal lobe sample B data
set consists of about half the number of reads of sample A, leading to lower statistical detection power. Sites in miRNAs with low expression levels (10 or
fewer reads) are marked with N.E. The editing levels are given in percentage.
aRaw P-value, that is, 1 minus the binomial cumulative distribution function, in the pooled human brain sample.
bChiang et al. (2010).
cKnown editing site (Blow et al. 2006).
dKnown editing site (Kawahara et al. 2008).
eRaw P-value in the human frontal lobe, sample A.
fRaw P-value in the human frontal lobe, sample B.
gDetected in publicly available NGS of mouse brain tissues (Table 2).
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identified in these two samples, nine of which were also identified

in the pooled human brain tissue (Table 1). Out of the five addi-

tional sites observed, two were confirmed as editing sites in the

ADAR overexpression samples (Table 1). Taken together, the total

number of editing sites found in this work for the human brain

under physiological conditions adds up to 24. Editing levels in the

frontal lobe were consistent between the two individuals and be-

tween them and the pooled brain tissue (Table 1). The consistency

across individual samples supports the notion that miRNA editing

could be utilized functionally (Greenberger et al. 2010). Obviously,

more experiments are needed to validate this point.

Possible functional significance of the edited miRNAs

Many of the detected A-to-G modifications were at the recognition

site of the mature miRNAs (Table 1). As demonstrated by Kawahara

et al. (2007), an editing event that changes the binding specificity

of the miRNA may have large impact on cellular processes. We used

TargetScan (Lewis et al. 2005) to estimate the effect of the recog-

nition site editing on the miRNA binding specificity (Methods;

Supplemental Table 6). The overlap between the putative mRNA

targets before and after the editing is very small (;3% overlap

on average) (see two examples in Fig. 3), meaning that editing

significantly changes the binding specificity of the miRNAs.

Therefore, it is possible that editing events create, de facto, ‘‘new

miRNAs’’ in the sense that they have new sets of mRNA targets. It is

tempting to speculate that the new mRNA targets have a common

functional role. Indeed, functional analysis revealed that some

molecular functions are overrepresented in the new mRNA targets

(Methods). Most notably, the predicted set of targets for the edited

versions of both miR-381 and miR-589 exhibits overrepresentation

of neuronal functions (Methods). This finding may hint that the

editing in these two miRNAs affects brain physiology, as previously

demonstrated for miR-376 (Kawahara et al. 2007).

A-to-I editing signal in publicly available mouse brain miRNAs

The editing detection procedure described above can be readily

used on any NGS data of mature miRNA. We used five publicly

available data sets to search for miRNA editing events in the mouse

cortex, cerebellum, and hippocampus (Methods; Table 2). In

agreement with the human brain data, we see a clear A-to-I editing

signal, as 98.8% of the sequence modifications detected are A-to-G

mismatches (Supplemental Fig. 5). Many of the detected sites are

known mouse editing sites (16/32) (Supplemental Table 7), and

many were identified in our human brain experiments above (10/

32) (Table 2). In addition, 16 novel editing sites were detected

(Methods; Supplemental Table 7). Different tissues typically show

similar editing sites. However, in a few cases the levels of editing

vary significantly between the different tissues and even between

different samples of the same tissue. For example, the editing level

of position 5 in the mature sequence of miR-411 varies between 1%

and 90% (Table 2).

Discussion
Here, we generated and analyzed data of mature miRNAs from

human brain tissues and observed a clear A-to-I editing signal, re-

vealing previously characterized editing sites as well as novel

editing sites. We have also examined a number of mouse brain

region samples. Reassuringly, all data sets yielded similar results,

providing overlapping lists of predicted editing sites. We further

validated our approach using an in vitro experimental setup in

Figure 2. Sequence preference in the bases flanking the A-to-G editing sites detected in the human brain samples (A) and the mouse brain samples (C ),
in sequence Logo format (Crooks et al. 2004). (B,D) Sequence preference in the bases opposing the A-to-G editing sites for the human brain samples and
the mouse brain samples, respectively.
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which NGS data were generated from ADAR overexpression in U87

and U118 cell-lines.

Interestingly, many of the detected editing sites have relatively

low editing levels (<5%) (Table 1). It is thus possible that many of

these sites have no biological significance, but the finding that some

of them are conserved in the mouse brain with the same level of

editing hints otherwise. One possibility is that editing sites might be

edited at a basal low level in generic (or pooled) tissues, being

strongly edited only in specific tissues or under specific conditions.

Indeed, our data show a number of miRNAs exhibiting high levels of

editing in one specific brain tissue sample (e.g., miR-1251 in the

mouse cerebellum) (Supplemental Table 7).

In addition, we note that low miRNA editing level does not

necessarily mean that the editing has no biological significance.

Editing of a miRNA has two effects. One is the reduction in the

amount of the wild-type miRNA, and the other is the introduction

of a new version of miRNA. A low level of editing in the recognition

site of an abundantly expressed miRNA might have virtually no

biological effect on the function of the original miRNA, due to the

small reduction in the wild-type abundance. However, even if

a small fraction of the transcripts of an abundant miRNA is edited

to become a ‘‘new miRNA,’’ with a new set of targets, this moder-

ately abundant miRNA might be functionally important. For ex-

ample, the edited version of miR-381, representing only 6% of the

wild-type miRNA count, is in the top quartile of all expressed

miRNAs (Supplemental Table 5).

Some of the editing sites detected in

mature miRNAs lie outside the recogni-

tion site. The biological significance of

these is yet to be explored. It was suggested

that these editing events may affect the

loading of the mature miRNAs to the RNA-

induced silencing complex (RISC) com-

plex, thereby altering the effectiveness of

the mature miRNAs (Nishikura 2010).

Altogether we identified 24 editing

sites in human brain miRNAs (pooled

total brain or frontal lobe) and 32 sites in

the mouse brain. It should be pointed out

that this number is rather small consider-

ing the dsRNA structure of the pri-miRNAs.

It was previously suggested that many of

the pri-miRNA editing events suppress

miRNA processing steps (Nishikura 2010).

Therefore, it is possible that many pri-

miRNAs do get edited but are then dis-

carded and do not result in mature miRNAs.

However, there are also reported cases of

pri-miRNA editing events that enhance

miRNA processing steps (Nishikura 2010).

Therefore other explanations should be

looked for, including the possibility that

the pre-miRNA export from the nucleus

is somehow suppressed by the editing

(Nishikura 2010). These possible mecha-

nisms may protect numerous genes from

being down-regulated by large number of

edited mature miRNAs.

The procedure described here allows

for a reliable detection and quantification

of A-to-I editing events using NGS data of

mature miRNAs in varying experimental

set-ups, including comparison of the editing profile between nor-

mal and pathological conditions. Such experiments will increase

our knowledge about how important is the regulation of miRNA

editing and whether its loss can be linked to certain pathologies.

Methods

Human brain miRNA sequencing
The RNA sample used was FirstChoice Human Brain Reference
RNA (Ambion AM6050), which is pooled from multiple donors
and several brain regions. All steps of the protocol for miRNA
capture and library construction were conducted according to the
method described by Alon et al. (2011). The mature miRNA library
was sequenced on one lane of Illumina GAIIx instrument following
the manufacturer’s protocol. The total number of reads was ;10
million. All the reads were filtered, demanding that the quality of
each read will not be below some threshold value (chosen to be 20)
in more than three positions. In addition, sequences identified as
59 or 39 adaptors were removed. After adaptors trimming, reads with
length longer (>28 bases) or shorter (<15 bases) than the typical
length of a mature miRNA were also removed. Approximately
5 million reads passed this filtering process.

Aligning the reads against known miRNAs

As the 39 end of mature miRNAs undergoes extensive modifica-
tions (Burroughs et al. 2010), the last two bases of the read were

Figure 3. Novel human miRNA editing sites detected in the pooled brain and frontal lobe samples
and validated using in vitro overexpression experiments in U87 and U118 cell-lines. The editing levels
in four miRNAs are shown: (A) miR-455 5p mature position 17, confirmed by ADARB1 overexpression in
both U87 and U118 cell-lines; (B) miR-421 mature position 14, confirmed by ADARB1 overexpression in
both U87 and U118 cell-lines; (C ) miR-381 mature position 4, confirmed by ADAR overexpression in the
U87 cell-line; and (D) miR-497 mature position 2, confirmed by ADARB1 overexpression in the U118
cell-line. If the editing site is detected in the mouse brain data of Chiang et al. (2010), the editing levels in
this tissue are also presented. The number of sequencing reads supporting the editing site is indicated on
the bar. (E,F) The predicted change in mRNA targets as a result of editing in the binding site of miR-381
and miR-497, respectively.
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trimmed (Chiang et al. 2010). The filtered and trimmed reads were
aligned using Bowtie (Langmead et al. 2009) against the human
genome (UCSC hg19/GRCh37), allowing up to one mismatch. We
demanded unique best hits (i.e., reads that cannot be aligned to
other locations in the genome with the same number of mis-
matches). This step solves, by and large, the cross-mapping prob-
lem that was reported by de Hoon et al. (2010). The importance of
39 end trimming, as well as aligning the reads against the genome
and not directly against the known miRNA sequences, is illustrated
in Figure 1, A through C. If we align all the untrimmed reads against
the known miRNA sequences, demanding unique best hits and up to
one mismatch, a considerable amount of adenylation and uridylation
events is clearly observed (Fig. 1A; Burroughs et al. 2010). When the
same procedure is performed with trimmed reads (the last two bases of
the reads were removed), A-to-G modifications become dominant (Fig.
1B). Finally, when the trimmed reads are uniquely aligned against the
genome and not directly to the miRNAs sequences, the cross-mapping
effect is suppressed and the A-to-G signal is enhanced (Fig. 1C).

Overall, ;1.4 million reads were successfully aligned to the
human genome. Only ;1.1 million reads that were aligned against
genomic regions of known pre-miRNAs, as defined in release 17 of
miRBase (Kozomara and Griffiths-Jones 2011), were further used.
Reads with a perfect match to regions of mature or star miRNAs
(according to the definitions of miRBase) were counted. In addi-
tion, reads that had only one mismatch to regions of mature or star
miRNAs but with a high-quality score (phred score) of 30 and above
at this position were also counted. Finally, for each position in the
mature and star miRNAs, the counts (number of supporting reads)
of each sequenced nucleotide were calculated.

Estimating the sequencing error rate

The sequencing error rate was estimated using the phred score
supplied by the Illumina’s sequencer. As only mismatches with

phred score of 30 were allowed (see above), the expected base call
error rate cannot exceed 0.1% in each position. We used the
aligned read data to validate that this estimate is indeed compati-
ble with the actual sequencing error in the retained reads. By
merging the data from all the mature and star miRNAs, we calcu-
lated the rate of any type of mismatch from the 12 possible mis-
matches. In this calculation, the location of the mismatch should
also be taken into account as biological modifications appear in the
39 of the miRNA (Burroughs et al. 2010) and sequencing quality is
lower toward the end of the read (Dohm et al. 2008). Therefore, the
calculation was performed separately in each position along the
mature/star miRNA. The total mismatch rate (summing all the 12
types of mismatches) was 0.1%–2.6% in the different positions.
These numbers are higher than the expected estimation from the
phred score (<0.1%). However, the rate relevant for the statistical
analysis to follow (see Identifying Editing Sites in miRNAs below) is
the maximal mismatch rate of any single type of mismatch, not
the sum over all mismatches. Indeed, by excluding four excep-
tions, no single mismatch type had rates >0.1% at any position.
The four exceptions were all A-to-G modifications at positions 1, 4,
5, and 6, and they were caused by extensive A-to-G modifications
in miR-99a, miR-381, miR-411, and miR-376c, respectively (Sup-
plemental Table 5). By excluding these four A-to-G mismatches,
the total mismatch rate is lowered to 0.1%–0.29%, which is com-
patible with the rate expected according to the phred score.

Identifying editing sites in miRNAs

All the locations in each mature or star miRNA were screened for
mismatches that were overrepresented considering the expected
sequencing error rate. This was done by applying the binomial cu-
mulative distribution on the counts of each sequenced nucleotide.
The expression filter used was very permissive, taking into account
any miRNA with more than five reads. By using a Benjamini-Hochberg

Table 2. The statistically significant A-to-G modifications sites detected in mature miRNAs from publicly available NGS of mouse brain tissues

miRNA Location

Editing levels
in mouse

cerebelluma

Editing levels
in mouse
cortexb

Editing levels
in mouse
cortexc

Editing levels
in mouse

hippo-campusd

Editing levels
in mouse

hippo-campuse

Editing
levels in

mouse brainf

Editing
levels in

human braing

miR-27a Star position 1 4.3 11.4 N.S. N.S. N.E. N.S. 20.5h,3.1i

miR-99a Mature position 1 8.1 6.7 N.S. N.S. 2.8 N.S. 5
miR-100 Mature position 1 0.3 1.4 N.S. N.S. N.S. N.S. 0.2h

miR-151 3p mature position 3 0.6 2.5 1.7 0.6 N.S. N.S. 0.6l, 1.7m

miR-376a Star position 4 7.2 4.8 15.1 9.8 N.E. 29.7 18.9j

miR-376c Mature position 6 2.6 4 1.4 N.S. N.S. 31.1 8.5
miR-379 Mature position 5 17.2 9.6 N.S. N.S. 3.5 9.5k 10.2
miR-411 Mature position 5 88 73.4 1.1 0.9 12.4 23.9 15.3
miR-421 Mature position 14 11 N.S. N.S. N.S. N.E. 5.4 1.8
miR-497 Mature position 2 0.8 N.S. 4.6 1.5 N.S. 10.4 6.2

Only sites that were also detected in the human samples (Table 1) are presented; the full list of sites is in Supplemental Table 7. The editing levels in the
edited miRNAs previously detected in the mouse brain (Chiang et al. 2010) are also presented. Sites in which the modifications were not statistically
significant are marked by N.S. Sites in miRNAs with low expression levels (10 or fewer reads) are marked with N.E. The editing levels are given in
percentage.
aSRA data set SRR346417.
bSRA data set SRR346423.
cSRA data set SRR038744
dSRA data set SRR038741.
eSRA data set SRR345196.
fChiang et al. (2010).
gFrom Table 1.
hDetected in the U118 ADARB1 overexpression experiment (Supplemental Table 5).
iDetected in the U87 ADARB1 overexpression experiment (Supplemental Table 5).
jThe equivalent of mouse miR-376a in star position 4 is human miR-376a-1 in star position 3.
kChiang et al. (2010) indicate editing in the star of miR-379, but they probably mean the mature as the star do not have A in position 5.
lDetected in the human frontal lobe, sample A (Table 1).
mDetected in the human frontal lobe, sample B (Table 1).
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false-discovery rate of 5% (Benjamini and Hochberg 1995), we
found 19 statistically significant locations (Table 1). Remarkably,
almost all the A-to-G mismatches that were recorded before the
binomial statistical test were indeed clustered to these 19 loca-
tions, whereas all the other types of modifications were filtered
out (Fig. 1C,D).

Note that the statistical significance threshold for detection
strongly depends on the number of reads available for this miRNA.
Thus, it is possible to have sites with the same level of editing in
two samples, where in one sample the modification is statistically
significant and in the other it is not.

The sequence properties of the detected A-to-G modification
sites are illustrated by the example of miR-455 (Supplemental Fig.
1) and summarized in Supplemental Table 2. Sequence preference
in the bases flanking the A-to-G editing sites detected in the hu-
man brain samples as well as sequence preference in the bases
opposing the A-to-G editing sites were created using the WebLogo
tool http://weblogo.berkeley.edu/ (Fig. 2; Crooks et al. 2004).

We note that some low-abundance isomirs display 59 sequence
modifications similar to the biological modifications reported at
the 39 of mature miRNAs (Burroughs et al. 2010). We identified 42
isomers that start one or two bases upstream of a different isomer
and display sequence modifications in the 59 end in the form of
adenylation and uridylation. In all these events, the abundance of
the modified isomer was at least two orders of magnitude lower
than the unmodified isomer. Eleven out of these 42 events were at
position 1 of the mature miRNA according to the miRBase defini-
tion (Kozomara and Griffiths-Jones 2011), and the rest were at up-
stream positions. Detailed characterization of the 39 modifications
in mature miRNAs is still in process (Burroughs et al. 2010; Wyman
et al. 2011), and it is possible that some low abundant 59 modifi-
cations also exist in mature miRNAs. Therefore, we have discarded
all these events from our analysis.

Comparison to known editing sites in mature human miRNAs

Experimentally validated editing sites in human miRNAs (Blow
et al. 2006; Kawahara et al. 2008) were examined in order to see
how many of them were detected by our method (Supplemental
Table 3). Only editing in mature and star miRNAs was included in
this comparison as our brain samples sequencing data only include
mature and star miRNAs.

In vitro overexpression experiments

The overexpression of ADAR and ADARB1 in the U87 and the
U118 human glioblastoma cell-lines was performed according to
the method described by Paz et al. (2007) and Cenci et al. (2008),
respectively (Supplemental Methods). MiRNA capturing and library
construction, for the U87 and U118 cell-lines samples, were con-
ducted using Illumina’s TruSeq Small RNA Sample Prep Kit. The
miRNAs were sequenced using Illumina HiSeq2000 instrument
(Supplemental Methods). The sequencing data were analyzed as
described above for the human brain miRNA sequencing data
(Supplemental Methods).

Human frontal lobe miRNA sequencing and analyzing

Normal frontal white matter samples, obtained from pediatric
patients undergoing focal brain resection for head injury (e.g.,
brain contusion), were used. The two frontal lobe samples (A and
B) were obtained from a 3-yr-old boy and a 3-mo-old girl, re-
spectively. MiRNAs were sequenced using Illumina HiSeq2000
instrument, and the sequencing data were analyzed as described
above (Supplemental Methods).

Analyzing publicly available mouse brain miRNAs
sequencing data

Five data sets were downloaded from the Sequence Read Archive
(SRA) (http://www.ncbi.nlm.nih.gov/sra): SRR346417, SRR346423,
SRR038744, SRR038741, and SRR345196, which contain mature
miRNA NGS reads from mouse cerebellum, cortex (first sample),
cortex (second sample), hippocampus (first sample), and hippo-
campus (second sample), respectively. These data sets were ana-
lyzed as described above (Supplemental Methods).

Functional analysis of the edited miRNAs

TargetScan (Lewis et al. 2005) was used in order to detect possible
targets of the miRNAs, before and after the editing. We used Tar-
getScanHuman 5.2 Custom (http://www.targetscan.org/vert_50/
seedmatch.html) to identify conserved mRNA targets for positions
2–8 in the mature miRNAs. Following the method described by
Kawahara et al. (2007), we approximate the set of targets for the
edited version of the miRNA by treating inosine as a guanosine.
Like guanosines, inosines bind strongly to cytidines and more
weakly to uridines. The binding energy of inosine to cytidine is
roughly the same as that of guanosine, while the binding energy of
inosine to uridine is lower than that of guanosine. On the other
hand, inosine weakly base-pairs to adenosine, while guanosine
does not (Vendeix et al. 2009). The following TargetScan estimates
should therefore be considered only as a rough estimate to the
change in miRNA specificity due to the editing event. The total
number of mRNA targets before and after the editing was recorded,
as well as the targets overlap (Supplemental Table 6). The overlap
between the putative mRNA targets before and after the editing
was ;3% on average, meaning that editing significantly changes
the binding specificity of the miRNAs.

The mRNA targets that were created by the editing events (i.e.,
were not detected as targets before the editing) were analyzed in
order to find overrepresented molecular functions in them. The
DAVID bioinformatics tools were used for that purpose (Huang
et al. 2009), focusing on overrepresented gene ontology (GO)
categories and KEGG pathways (Ashburner et al. 2000; Kanehisa
and Goto 2000). The DAVID’s default human genes background
was used. From the list of 18 miRNAs that were edited in their
binding sites (Table 1), six had statistically significant (Benjamini-
Hochberg corrected P < 0.05) overrepresentation of molecular
functions in their mRNA targets (Supplemental Methods). Similar
analysis was performed for the edited miRNAs detected in the
mouse brain samples (Supplemental Table 10; Supplemental
Methods).

Data access
The sequencing data have been submitted to the NCBI Sequence
Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under ac-
cession numbers SRA029326, SRA044983, and SRA049814. A de-
tailed protocol describing the editing detection scheme, including
our scripts, is given at webpage www.tau.ac.il/;elieis/miR_editing.
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