CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Trade-off between transcriptome plasticity and genome evolution in cephalopods
Authors
Arie Admon
Shahar Alon
+8 more
Eli Eisenberg
Boaz Elstein
Erez Levanon
Noa Liscovitch-Brauer
Hagit T. Porath
Joshua J. C. Rosenthal
Ron Unger
Tamar Ziv
Publication date
1 March 2017
Publisher
'Elsevier BV'
Doi
Cite
Abstract
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Cell Press for personal use, not for redistribution. The definitive version was published in Cell 169 (2017): 191-202, doi:10.1016/j.cell.2017.03.025.RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of their nature and effects in these organisms. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function.NLB was supported by a post-doctoral scholarship from the Center for Nanoscience and Nanotechnology, Tel-Aviv University. The research of RU is supported by the Israel Science Foundation (772/13). The research of EYL was supported by the European Research Council (311257) and the Israel Science Foundation (1380/14). The research of JJCR was supported by the National Institutes of Health [1R0111223855, 1R01NS64259], the National Science Foundation (HRD- 1137725), and the Frank R. Lillie and Laura and Arthur Colwin Research Fellowships from the Marine Biological Laboratory in Woods Hole. The work of JJCR and EE was supported by grant No 094/2013 from the United States-Israel Binational Science Foundation (BSF).2018-04-0
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 07/08/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.cell.2017...
Last time updated on 11/01/2021