15 research outputs found

    CO2/pH-responsive particles with built-in fluorescence read-out

    Get PDF
    yesA novel fluorescent monomer was synthesized to probe the state of CO2-responsive cross-linked polymeric particles. The fluorescent emission of this aminobromomaleimide-bearing monomer, being sensitive to protic environments, can provide information on the core hydrophilicity of the particles and therefore indicates the swollen state and size of the particles. The particles’ core, synthesized from DEAEMA (N,N-diethylaminoethyl methacrylate), is responsive to CO2 through protonation of the tertiary amines of DEAEMA. The response is reversible and the fluorescence emission can be recovered by simply bubbling nitrogen into the particle solution. Alternate purges of CO2 and N2 into the particles’ solution allow several ON/OFF fluorescence emission cycles and simultaneous particle swelling/shrinking cycles.British Petroleum Company (BP), Engineering and Physical Sciences Research Council (EPSRC

    Micellization of a Di-Block Copolymer in Ethylene Glycol and Its Utilization for Suspension of Carbonaceous Nanostructures

    No full text
    Suspensions of carbonaceous nanoparticles (NPs) in ethylene glycol (EG) can be used as colloidal inks for additive manufacturing and nano-fluids for heat-transfer applications. While micellar solutions of surfactants are often used for suspension of the NPs in water, micellization of surfactants in EG is suppressed as compared to aqueous solutions and a well-defined critical micellization concentration (CMC) is often not observed. Unlike the surfactants, a di-block copolymer comprising a poly(ethylene glycol) monomethylether methacrylate (PEGMA) segment, 2-(diethylaminoethyl) methacrylate (DEAEMA) and butyl methacrylate (BMA), poly(O950)-b-(DEAEMA-co-BMA) was found to assemble into spherical micelles in EG. Surface tension measurements show a well-defined CMC that depends on the volume fraction of EG. Cryogenic transmission electron microscopy and dynamic light scattering show the presence of spherical micelles with a diameter that reduces with the volume fraction of EG. The micellar solutions were further used for suspending carbonaceous NPs of different geometry and characteristic dimensions: C60 fullerenes, multi-walled carbon nanotubes, and nanodiamonds. The flow behavior of the suspensions exhibits a relatively low viscosity and mostly Newtonian behavior due to strong interaction between the NPs and the micelles. These suspensions may be used as colloidal inks for two-dimensional and three-dimensional printing
    corecore