39 research outputs found

    Do Workers’ Remittances Increase Terrorism? Evidence from South Asian Countries

    Get PDF
    This study investigates the influence of workers’ remittances on terrorism in 5 South Asian countries. The panel data comprised of 20 years from the period of 1994 to 2013 is used. The advanced econometric techniques i.e, CIPS unit root test, bootstrap cointegration, Pedroni co-integration, FMOLS, fixed effect model and heterogeneous panel causality technique have been applied. The results suggest that the workers’ remittances have a significant positive impact on the terrorism in South Asian countries. The results also indicate that the control variables, i.e., Inflation, unemployment, and population size also have a significant positive relationship with terrorism. The result of causality shows that unidirectional causality exists of remittance, population, and inflation with unemployment, however, bidirectional causality exists between unemployment and terrorism.The sample size is restricted to South Asian countries only so the result cannot be generalized to other countries. This study will help the policymakers of the region, to make necessary amendments in law so that remittance amount does not be accessible to the group to use in terrorist activities. On a larger perspective, only two studies have been carried out that examines the relationship between terrorism and remittance. One study is conducted in the sub-Saharan region by Elu and Price (2011), and the other one is conducted on panel data by Mascarenhas and Sandler (2014). No study to the best of our knowledge has been done in the South Asian context, so this study is conducted to analyze the impact of workers’ remittance on terrorism in South Asian countries

    Do Workers’ Remittances Increase Terrorism? Evidence from South Asian Countries

    Get PDF
    This study investigates the influence of workers’ remittances on terrorism in 5 South Asian countries. The panel data comprised of 20 years from the period of 1994 to 2013 is used. The advanced econometric techniques i.e, CIPS unit root test, bootstrap cointegration, Pedroni co-integration, FMOLS, fixed effect model and heterogeneous panel causality technique have been applied. The results suggest that the workers’ remittances have a significant positive impact on the terrorism in South Asian countries. The results also indicate that the control variables, i.e., Inflation, unemployment, and population size also have a significant positive relationship with terrorism. The result of causality shows that unidirectional causality exists of remittance, population, and inflation with unemployment, however, bidirectional causality exists between unemployment and terrorism.The sample size is restricted to South Asian countries only so the result cannot be generalized to other countries. This study will help the policymakers of the region, to make necessary amendments in law so that remittance amount does not be accessible to the group to use in terrorist activities. On a larger perspective, only two studies have been carried out that examines the relationship between terrorism and remittance. One study is conducted in the sub-Saharan region by Elu and Price (2011), and the other one is conducted on panel data by Mascarenhas and Sandler (2014). No study to the best of our knowledge has been done in the South Asian context, so this study is conducted to analyze the impact of workers’ remittance on terrorism in South Asian countries

    GEOFIZIČKA ISTRAŽIVANJA POTENCIJALNOGA KLIZIŠTA U PODRUČJU MAYOON, DISTRIKT HUNZA, GILGIT-BALTISTAN, PAKISTAN

    Get PDF
    The Mayoon landslide in the Hunza District is a slowly developed, non-catastrophic landslide that has gained its importance in the last few years after its rapid activation and fast slip rate. The area is characterized by high earthquake hazards (zone 3 with a peak ground acceleration value of 2.4–3.2 m/s2) by the Building Code of Pakistan due to frequent earth quakes. The past high earthquake activity in the area has displaced the foliated rocks towards the south and is responsible for opening the bedrock joints. The head and body of the landslide are covered by unconsolidated material and have fractures of varying lengths and widths. The non-invasive geophysical techniques, including Ground Penetrating Radar (GPR) and Electrical Resistivity Soundings (ERS), are deployed to evaluate the Mayoon landslide subsurface. The subsurface is interpreted into a two-layer model. Bright reflectors and highly variable resistivity characterize the top layer (Layer-1). This layer is associated with a loose, highly heterogeneous, fragmented material deposited under glacial settings over the existing bedrock. Hyperbolic reflections and intermediate resistivity characterize the bottom layer (Layer-2). This layer is associated with foliated metamorphic bedrock. The hyperbolic reflections show faults/fractures within the bedrock. The extension of these fractures/faults with depth is uncertain due to decay in the GPR signal with depth. The intermediate resistivity shows the bedrock is weathered and foliated. Reflections within Layer-1 have disrupted directly above the fractures/faults suggesting a possible movement. A bright reflection between the two layers highlights the presence of the debonded surface. Loose material within Layer-1 coupled with debonding possesses a significant hazard to generate a landslide under unfavourable conditions, such as an intense rainstorm or earthquake activity.Klizište Mayoon u distriktu Hunza pripada skupini sporo razvijajućih, nekatastrofičnih klizišta. Važnost mu je porasla u nekoliko zadnjih godina nakon što se klizanje znatno ubrzalo. Cijelo područje obilježeno je visokim potresnim rizikom (zona 3, s najvećim ubrzanjem tla 2,4 – 3,2 m/s2), a u skladu s pakistanskim propisima o gradnji. Snažni potresi u prošlosti pomaknuli su blokove metamorfnih stijena prema jugu i uzrokovali otvaranje brojnih pukotina u stijenama podine. Čelo i tijelo klizišta prekriveno je nekonsolidiranim materijalom te ima pukotine različitih širina i dužina. Prostor klizišta istražen je neinvazivnim geofizičkim tehnikama poput georadara i mjerenja električne otpornosti. Podzemlje je prikazano dvoslojnim modelom. Prvi sloj (1) predstavljen je snažnim reflektorom i vrlo promjenjivom otpornošću. Sastavljen je od rastresitih, vrlo heterogenih, fragmentiranih materijala taloženih tijekom glacijala preko stijenske podine. Ispod je drugi sloj (2) obilježen hiperboličkim refleksima te umjerenom otpornošću i pruža se unutar folijacijskih, metamorfnih stijena. Oblik refleksa upozorava na rasjede i pukotine podine, no oni se teško prate s povećanjem dubine. Otpornost također upućuje na trošenje i folijaciju. Refleksi u sloju 1 prekidaju se iznad rasjeda i pukotina upozoravajući na moguće gibanje. Snažni refleksi između dvaju slojeva naglašavaju postojanje granice između njih. Rastresiti materijal u sloju 1, zajedno s postojanjem takve granice, predstavlja znatan rizik nastanka klizišta, posebice u rizičnim uvjetima poput olujnoga pljuska ili potresa

    Numerical study of diffusive fish farm system under time noise

    Get PDF
    In the current study, the fish farm model perturbed with time white noise is numerically examined. This model contains fish and mussel populations with external food supplied. The main aim of this work is to develop time-efficient numerical schemes for such models that preserve the dynamical properties. The stochastic backward Euler (SBE) and stochastic Implicit finite difference (SIFD) schemes are designed for the computational results. In the mean square sense, both schemes are consistent with the underlying model and schemes are von Neumann stable. The underlying model has various equilibria points and all these points are successfully gained by the SIFD scheme. The SIFD scheme showed positive and convergent behavior for the given values of the parameter. As the underlying model is a population model and its solution can attain minimum value zero, so a solution that can attain value less than zero is not biologically possible. So, the numerical solution obtained by the stochastic backward Euler is negative and divergent solution and it is not a biological phenomenon that is useless in such dynamical systems. The graphical behaviors of the system show that external nutrient supply is the important factor that controls the dynamics of the given model. The three-dimensional results are drawn for the various choices of the parameters

    Impact of Political, Social Safety, and Legal Risks and Host Country Attitude towards Foreigners on Project Performance of China Pakistan Economic Corridor (CPEC)

    Get PDF
    The China Pakistan Economic Corridor (CPEC) project was signed between China and Pakistan in the year 2013. This mega project connects the two countries to enhance their economic ties and give them access to international markets. The initial investment for the project was $46 billion with a tentative duration of fifteen years. Being an extensive project in terms of cost and duration, many factors and risks affect its performance. This study aims to investigate the effects of political (PR), social safety (SR), and legal risks (LR) on the project performance (PP) of the CPEC. It further investigates the significance of the host country’s attitude towards foreigners (HCA). A research framework consisting of PR, SR, and LR as independent variables, PP as the dependent variable, and HCA as moderator is formulated and tested in the current study. In this quantitative study, the Likert scale is used to measure the impact of the assessed risks. A questionnaire survey is used as a data collection tool to collect data and test the research framework and associated hypotheses. The partial least square structural equation modeling (PLS-SEM) is used to perform the empirical test for validation of the study, with a dataset of 99 responses. The empirical investigation finds a negative relationship between PR, SR, LR, and PP. It is concluded that PR, SR, and LR negatively influence the PP of CPEC. Furthermore, HCA negatively moderates the PR, LR, and PP of CPEC. In contrast, the value of SR and PP is positive in the presence of the positive HCA

    Corn-Soybean Intercropping Improved the Nutritional Quality of Forage Cultivated on Podzols in Boreal Climate

    Get PDF
    Intercropping systems could be a potential source of nutrient-rich forage production in cool climates on podzolic soils common in boreal ecosystems. In this study, we evaluated the effects of corn–soybean intercropping (IC) on the nutritional quality of forage. Two silage corn varieties were cultivated as monocropping (MC) or were intercropped with three forage soybean varieties using a randomized complete block design. IC significantly increased the crude protein (22%) and decreased the acid detergent (14%) and neutral detergent (6%) fibers. Forage net energy, total digestible nutrients, ash, dry matter intake, digestible dry matter and relative feed value were also significantly increased (p ≤ 0.05) in the IC treatments compared to corn MC. The macro and micro nutrients were higher in IC than corn MC. Intercropping increased the omega 3 fatty acid (FA) contents (67%) compared to corn MC. IC also increased the active microbial community in the plant root zone, which may contribute to the improvement in forage nutritional quality because the active soil microbial community composition showed significant correlations with soluble sugars, soluble proteins and potassium contents of the forage. These results demonstrate that corn–soybean IC could be a suitable cropping system to increase the nutritional quality of forage cultivated on podzols in boreal climates. The resultant forage has the potential to be a source of high-value animal feed for livestock production in cool climate regions of the world

    Sustainable economic growth potential of biomass-enriched countries through bioenergy production: State-of-the-art assessment using product space model

    Get PDF
    The current study aims to examine the economically viable biomass feedstocks for bioenergy generation and their export potential. The Product Space Model (PSM) is the primary tool used to achieve the aim by accomplishing certain objectives. The study’s findings show that Pakistan has abundant biomass resources for energy production. Canola oil, leather flesh wastes, and poultry fattening show the highest PRODY values, 46,735, 44,438, and 41,791, respectively. These have high-income potential and are considered feasible for export after meeting local energy demand. While goat manure, cashew nutshell, and cotton stalk show lower income potential having values of 3,641, 4,225, and 4,421, respectively. The biowastes having low-income potential are more beneficial to utilize in energy generation plants within the country. The United States is observed to make the most sophisticated products, indicated by an EXPY value of 36296.89. While the minimum level of sophistication is observed for Indonesia, as revealed by its EXPY value of 22235.41 among all considered countries. The PSM policy map analysis of the current study shows that Pakistan and Argentina are located in the Parsimonious Policy quadrant, suggesting shifting toward unexploited products closely related to the existing export baskets. Although the United States, China, India, Indonesia, and Brazil are found in the most desired Let-it-be Policy quadrant. They have more room to diversify their industries and enhance their export potential. The study has practical applications in economic, social, and environmental perspectives, focusing on economic, clean, and sufficient energy. Furthermore, exportable biomass feedstocks are identified to strengthen the economy. Further research must be conducted to evaluate other indicators of the PSM to explore the proximity aspect of PSM, as it would provide a clearer picture of bioenergy and biomass export prospects

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore