30 research outputs found

    Quantitative Evidence for Revising the Definition of Primary Graft Dysfunction after Lung Transplant

    Get PDF
    RATIONALE: Primary graft dysfunction (PGD) is a form of acute lung injury that occurs after lung transplantation. The definition of PGD was standardized in 2005. Since that time, clinical practice has evolved, and this definition is increasingly used as a primary endpoint for clinical trials; therefore, validation is warranted. OBJECTIVES: We sought to determine whether refinements to the 2005 consensus definition could further improve construct validity. METHODS: Data from the Lung Transplant Outcomes Group multicenter cohort were used to compare variations on the PGD definition, including alternate oxygenation thresholds, inclusion of additional severity groups, and effects of procedure type and mechanical ventilation. Convergent and divergent validity were compared for mortality prediction and concurrent lung injury biomarker discrimination. MEASUREMENTS AND MAIN RESULTS: A total of 1,179 subjects from 10 centers were enrolled from 2007 to 2012. Median length of follow-up was 4 years (interquartile range = 2.4-5.9). No mortality differences were noted between no PGD (grade 0) and mild PGD (grade 1). Significantly better mortality discrimination was evident for all definitions using later time points (48, 72, or 48-72 hours; P < 0.001). Biomarker divergent discrimination was superior when collapsing grades 0 and 1. Additional severity grades, use of mechanical ventilation, and transplant procedure type had minimal or no effect on mortality or biomarker discrimination. CONCLUSIONS: The PGD consensus definition can be simplified by combining lower PGD grades. Construct validity of grading was present regardless of transplant procedure type or use of mechanical ventilation. Additional severity categories had minimal impact on mortality or biomarker discrimination

    The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia

    Get PDF
    BACKGROUND: Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion. METHODS: We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort. Using mass spectroscopy, F2-isoprostanes and isofurans were measured in plasma collected after transplantation. Cases were defined in 2 ways: grade 3 PGD present at day 2 or day 3 after reperfusion (severe PGD) or any grade 3 PGD (any PGD). RESULTS: There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 controls. Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (28.6 pg/ml vs 19.8 pg/ml, p = 0.03). Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (29.6 pg/ml vs 19.0 pg/ml, p = 0.03) among patients reperfused with FIO2 >40%. Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml vs 22.5 pg/ml, p = 0.046) and isofuran (66.9 pg/ml vs 34.6 pg/ml, p = 0.046) levels were higher in severe PGD compared with control subjects. CONCLUSIONS: Plasma levels of lipid peroxidation products are higher in patients with severe PGD, in recipients of lungs from donors with smoke exposure, and in recipients exposed to higher Fio2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by donor exposure to cigarette smoke and hyperoxia at reperfusion

    Early KLRG1 +

    No full text

    Lung transplantation in telomerase mutation carriers with pulmonary fibrosis

    No full text
    Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the USA, Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p,0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients
    corecore