76 research outputs found

    Reversible Cardiomyopathies

    Get PDF
    Cardiomyopathy includes a diverse and heterogeneous group of disorders affecting the myocardium and eventually leading to cardiac dysfunction. Cardiomyopathy is the leading cause of hospitalization in patients older than 65 years of age and it is an important cause for enormous healthcare expenditure. All reversible cardiomyopathies can be associated with cardiomegaly, systolic heart failure, structural changes, and an increase in mortality, but when the offensive agent is identified and stopped, these conditions tend to stop their progression and reverse. The prognosis of reversible nonischemic cardiomyopathies is better than ischemic or other nonreversible cardiomyopathies. Additionally, it is important to diagnose etiology of HF early and precisely to determine prognosis and effective treatment. Most patients with reversible cardiomyopathy present with clinical picture similar to that of systolic heart failure. Here in this book chapter, we discuss about different types of reversible cardiomyopathy including pathogenesis, clinical picture, diagnosis and treatment

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    Nosocomial UTI

    No full text

    Sexual Differentiation of the Spinal Nucleus of the Bulbocavernosus Is Not Mediated Solely by Androgen Receptors in Muscle Fibers

    No full text
    The spinal nucleus of the bulbocavernosus (SNB) neuromuscular system is a highly conserved and well-studied model of sexual differentiation of the vertebrate nervous system. Sexual differentiation of the SNB is currently thought to be mediated by the direct action of perinatal testosterone on androgen receptors (ARs) in the bulbocavernosus/levator ani muscles, with concomitant motoneuron rescue. This model has been proposed based on surgical and pharmacological manipulations of developing rats as well as from evidence that male rats with the testicular feminization mutation (Tfm), which is a loss of function AR mutation, have a feminine SNB phenotype. We examined whether genetically replacing AR in muscle fibers is sufficient to rescue the SNB phenotype of Tfm rats. Transgenic rats in which wild-type (WT) human AR is driven by a human skeletal actin promoter (HSA-AR) were crossed with Tfm rats. Resulting male HSA-AR/Tfm rats express WT AR exclusively in muscle and nonfunctional Tfm AR in other tissues. We then examined motoneuron and muscle morphology of the SNB neuromuscular system of WT and Tfm rats with and without the HSA-AR transgene. We observed feminine levator ani muscle size and SNB motoneuron number and size in Tfm males with or without the HSA-AR transgene. These results indicate that AR expression in skeletal muscle fibers is not sufficient to rescue the male phenotype of the SNB neuromuscular system and further suggest that AR in other cell types plays a critical role in sexual differentiation of this system
    corecore