18 research outputs found

    Sinusoidal cells and cytokine response in the tetrachloromethane-induced hepatotoxicity and an approach to its correction

    Get PDF
    High occurence of liver diseases (toxic, viral hepatitis, liver failure, cirrhosis) requires urgent search of new methods for management of the hepatobiliary diseases. At the present time, the role of immune mechanisms in pathogenesis of diffuse toxic liver damage is not finally clarified. The model of toxic hepatitis induced by carbon tetrachloride (CCl4) is widely known, but this approach allows us to perform complex evaluation and develop the methods for adequate correction of liver disorders in experimental model, which is not always feasible in clinical setting. To design a model of diffuse toxic liver damage, the CCl4 oil solution was used, having been administered intraperitoneally to experimental animals, at a single dose of 50 mg per 100 g body mass. Aiming for correction of toxic liver damage, the injections of aminophthalhydrazide (APH) to experimental animals were carried out intramuscularly at the dose of 2 mg/kg over the terms of experiment. An evaluation of the role of sinusoidal cells (SC) and cytokine production at the local and systemic level were carried out in the model of toxic liver damage caused by CCl4 and its correction by APH treatment. In the course of developing diffuse toxic liver damage induced by CCl4, the production of proinflammatory cytokines TNFα, IL-1α and IL-18 was enhanced at the local level, whereas an increase in TNFα concentration was observed in blood plasma. Following aminophthalhydrazide (APH) administration, the concentrations of proinflammatory cytokines (TNFα and IL-18) decreased at system level, along with locally decreased levels of IL-6 and IFNγ. Changes in the functional state of immunocompetent cells, which include sinusoidal cells (SC), have a significant impact on the development of pathological processes in the liver. The results of our study presume that, over the early periods of toxic impact upon liver tissue, the number of SCs increases both due to influx of blood monocytes and mature macrophages from the peritoneal cavity that enter the injury site directly via mesothelial layer. The SCs provide phagocytosis of damaged hepatocytes and contribute to resolution of the inflammatory process. Modulation of the macrophage activities by APH contributes to increased amounts of SCs at the early stages, and stabilizes their quantities after 2 weeks of APH injections. Change in the numbers of liver SCs during toxic damage affects the production of cytokines. A direct effect of APH upon the SCs may change the production of regulatory factors and compensate the insufficient rate of recovery processes after the toxic damage. © 2019, SPb RAACI

    Differentiation and neuro-protective properties of immortalized human tooth germ stem cells

    Get PDF
    Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy. © 2011 Springer Science+Business Media, LLC

    Comparison of Pheochromocytoma-Specific Morbidity and Mortality among Adults with Bilateral Pheochromocytomas Undergoing Total Adrenalectomy vs Cortical-Sparing Adrenalectomy

    Get PDF
    Importance: Large studies investigating long-term outcomes of patients with bilateral pheochromocytomas treated with either total or cortical-sparing adrenalectomies are needed to inform clinical management. Objective: To determine the association of total vs cortical-sparing adrenalectomy with pheochromocytoma-specific mortality, the burden of primary adrenal insufficiency after bilateral adrenalectomy, and the risk of pheochromocytoma recurrence. Design, Setting, and Participants: This cohort study used data from a multicenter consortium-based registry for 625 patients treated for bilateral pheochromocytomas between 1950 and 2018. Data were analyzed from September 1, 2018, to June 1, 2019. Exposures: Total or cortical-sparing adrenalectomy. Main Outcomes and Measures: Primary adrenal insufficiency, recurrent pheochromocytoma, and mortality. Results: Of 625 patients (300 [48%] female) with a median (interquartile range [IQR]) age of 30 (22-40) years at diagnosis, 401 (64%) were diagnosed with synchronous bilateral pheochromocytomas and 224 (36%) were diagnosed with metachronous pheochromocytomas (median [IQR] interval to second adrenalectomy, 6 [1-13] years). In 505 of 526 tested patients (96%), germline mutations were detected in the genes RET (282 patients [54%]), VHL (184 patients [35%]), and other genes (39 patients [7%]). Of 849 adrenalectomies performed in 625 patients, 324 (52%) were planned as cortical sparing and were successful in 248 of 324 patients (76.5%). Primary adrenal insufficiency occurred in all patients treated with total adrenalectomy but only in 23.5% of patients treated with attempted cortical-sparing adrenalectomy. A third of patients with adrenal insufficiency developed complications, such as adrenal crisis or iatrogenic Cushing syndrome. Of 377 patients who became steroid dependent, 67 (18%) developed at least 1 adrenal crisis and 50 (13%) developed iatrogenic Cushing syndrome during median (IQR) follow-up of 8 (3-25) years. Two patients developed recurrent pheochromocytoma in the adrenal bed despite total adrenalectomy. In contrast, 33 patients (13%) treated with successful cortical-sparing adrenalectomy developed another pheochromocytoma within the remnant adrenal after a median (IQR) of 8 (4-13) years, all of which were successfully treated with another surgery. Cortical-sparing surgery was not associated with survival. Overall survival was associated with comorbidities unrelated to pheochromocytoma: of 63 patients who died, only 3 (5%) died of metastatic pheochromocytoma. Conclusions and Relevance: Patients undergoing cortical-sparing adrenalectomy did not demonstrate decreased survival, despite development of recurrent pheochromocytoma in 13%. Cortical-sparing adrenalectomy should be considered in all patients with hereditary pheochromocytoma

    ENSAT registry-based randomized clinical trials for adrenocortical carcinoma

    Get PDF
    Adrenocortical carcinoma (ACC) is an orphan disease lacking effective systemic treatment options. The low incidence of the disease and high cost of clinical trials are major obstacles in the search for improved treatment strategies. As a novel approach, registry-based clinical trials have been introduced in clinical research, so allowing for significant cost reduction, but without compromising scientific benefit. Herein, we describe how the European Network for the Study of Adrenal Tumours (ENSAT) could transform its current registry into one fit for a clinical trial infrastructure. The rationale to perform randomized registry-based trials in ACC is outlined including an analysis of relevant limitations and challenges. We summarize a survey on this concept among ENSAT members who expressed a strong interest in the concept and rated its scientific potential as high. Legal aspects, including ethical approval of registry-based randomization were identified as potential obstacles. Finally, we describe three potential randomized registry-based clinical trials in an adjuvant setting and for advanced disease with a high potential to be executed within the framework of an advanced ENSAT registry. Thus we, therefore, provide the basis for future registry-based trials for ACC patients. This could ultimately provide proof-of-principle of how to perform more effective randomized trials for an orphan disease

    Associations between Viral Infection History Symptoms, Granulocyte Reactive Oxygen Species Activity, and Active Rheumatoid Arthritis Disease in Untreated Women at Onset: Results from a Longitudinal Cohort Study of Tatarstan Women

    No full text
    To evaluate the effects of infectious episodes at early stages of rheumatoid arthritis (eRA) development, 59 untreated eRA patients, 77 first-degree relatives, from a longitudinal Tatarstan women cohort, were included, and compared to 67 healthy women without rheumatoid arthritis (RA) in their family history. At inclusion, informations were collected regarding both the type and incidence of infectious symptom episodes in the preceding year, and granulocyte reactive oxygen species (ROS) were studied at the basal level and after stimulation with serum-treated zymosan (STZ). In the eRA group, clinical [disease activity score (DAS28), health assessment questionnaire] and biological parameters associated with inflammation (erythrocyte sedimentation rate, C-reactive protein) or with RA [rheumatoid factor, anticyclic citrullinated peptide (anti-CCP2) antibodies] were evaluated. An elevated incidence of infection events in the previous year characterized the eRA and relative groups. In addition, a history of herpes simplex virus (HSV) episodes was associated with disease activity, while an elevated incidence of anti-CCP2 autoantibody characterized eRA patients with a history of viral upper respiratory tract infection symptoms (V-URI). Granulocyte ROS activity in eRA patients was quantitatively [STZ peak and its area under the curve (AUC)] and qualitatively (STZ time of peak) altered, positively correlated with disease activity, and parameters were associated with viral symptoms including HSV exacerbation/recurrence, and V-URI. In conclusion, our study provides arguments to consider a history of increased viral infection symptoms in RA at the early stage and such involvement needs to be studied further

    Differentiation and neuro-protective properties of immortalized human tooth germ stem cells

    No full text
    Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy. © 2011 Springer Science+Business Media, LLC

    Differentiation and neuro-protective properties of immortalized human tooth germ stem cells

    No full text
    Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy. © 2011 Springer Science+Business Media, LLC

    Differentiation and neuro-protective properties of immortalized human tooth germ stem cells

    No full text
    Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy. © 2011 Springer Science+Business Media, LLC
    corecore