17 research outputs found

    Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells

    Get PDF
    MicroRNAs (miRNA) are a large family of small single-stranded RNA molecules found in all multicellular organisms. Early studies have been shown that miRNA are involved in cancer development and progression, and this role can be done by working as an oncogenes and tumor suppressor genes, so manipulation of this molecules can be a promising approach in cancer therapy, and experimental results represented that the modification in breast cancer phenotype is possible by miRNA expression alteration. miR-16, which is located in 13q14 chromosome, plays critical roles as a tumor suppressor by targeting several oncogenes which regulate cell cycle and apoptosis. Hence, in the present study, we investigated whether miR-16 could decline growth and survival of MCF-7 cell line as model of human breast cancer. MCF-7 cell line was infected with lentiviruses containing miR-16 precursor sequence. The effects of ectopic expression of miR-16 on breast cancer phenotype were examined by cell cycle analysis and apoptosis assays. miR-16 cytotoxicity effect was measured by the MTT assay. We showed that the miR-16 overexpression reduces Cyclin D1 and BCL2 at messenger RNA (mRNA) and protein levels in MCF-7 cell line. In addition, this is found that enforced expression of miR-16 decreases cell growth and proliferation and induces apoptosis in MCF-7 cells. In conclusion, our results revealed that upregulation of miR-16 would be a potential approach for breast cancer therapy. © 2015, The Society for In Vitro Biology

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    Robust decentralized voltage control for uncertain DC microgrids

    No full text
    A decentralized voltage control scheme to achieve robust stability and robust performance of islanded direct current (DC) microgrids is presented in this paper. The investigated microgrid consists of multiple distributed generation (DG) units with a general topology, each one comprising a local uncertain ZIP (constant impedance (Z), constant current (I), and constant power (P)) load. The proposed controller confers the following main advantages: 1) the design procedure is scalable, 2) it has a completely decentralized structure, 3) it prepares stability and desirable performance of the nominal closed-loop microgrid, 4) it preserves robust stability as well as robust performance of microgrid system under different sources of uncertainty, including plug-and-play (PnP) functionalities of DGs, microgrid topology changes, uncertain ZIP load, and unmodeled load dynamics, 5) every local controller is the solution of a unique convex optimization problem, resulting in the optimal performance and robustness to several different successive changes. First, a linear time-invariant (LTI) state-space model is developed for each DG subsystem with capturing disturbances, and different uncertainty sources are modeled as a new single polytope. Then, all control objectives are converted into a robust dynamic output-feedback-based controller for an LTI polytopic system with performance criterion. Finally, the obtained nonconvex problem is reduced to a linear matrix inequality (LMI) based optimization problem. Several simulation case studies are carried out in MATLAB to demonstrate the effectiveness of the proposed controller

    Extending the application of a magnetic PEG three-part drug release device on a graphene substrate for the removal of Gram-positive and Gram-negative bacteria and cancerous and pathologic cells

    No full text
    M Ramezani Farani,1 P Khadive Parsi,1 Gh Riazi,2 M Shafiee Ardestani,3 H Saligeh Rad4,5 1School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran 4563-11155, Iran; 2Institute of Biophysics and Biochemistry, University of Tehran, Tehran 1417614411, Iran; 3Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; 5Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran Objective: In this study, novel graphene oxide (GO)-based nanocomposites are presented. In fact, we have tried to replace the carboxyl groups on the surface of GO with amine groups to allow the biocompatible poly(ethylene glycol) bis(carboxymethyl) ether (average Mn 600) polymer to bond through an amide bond. Materials and methods: The synthesis was conducted accurately according to final characterization experiments (Raman, X-ray diffraction [XRD], atomic force microscopy [AFM], X-ray photoelectron spectroscopy [XPS], thermogravimetric analysis [TGA], etc). The antimicrobial property of this nanocomposite was examined in Escherichia coli (ATCC 25922) as Gram-negative and Staphylococcus aureus (ATCC 25923) as Gram-positive bacterial species. Besides, curcumin (CUR) was added to the produced nanocomposite both as a promising anticancer drug and an antioxidant, the toxicity of which was then assessed on cellular-based HepG2 and pC12. Results: An intense increase in toxicity was detected by MTT assay. Conclusion: It can mainly be concluded that the nanocomposite synthesized in this study is capable of delivering drugs with antibacterial properties. Keywords: graphene oxide, magnetic nanocomposite, drug delivery, antimicrobial, curcumi

    Superplastic Behavior in High-Pressure Torsion-Processed Mo(7.5)Fe(55)Co(18)Cr(12.5)Ni(7)Medium-Entropy Alloy

    No full text
    In the present study, superplasticity of high-pressure torsion-processed non-equiatomic Mo(7.5)Co(18)Cr(12.5)Fe(55)Ni(7)medium-entropy alloy with nanograins was investigated. The superplastic elongation of 505 pct was achieved at a temperature of 800 degrees C and a low strain rate. The precipitation of the mu phase enriched with Mo hinders the grain boundary migration and also acts as the origin for cavity and crack formation.11Nsciescopu
    corecore