39 research outputs found

    How much Northern Hemisphere precipitation is associated with extratropical cyclones?

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Extratropical cyclones are often associated with heavy precipitation events and can have major socio-economic impacts. This study investigates how much of the total precipitation in the Northern Hemisphere is associated with extratropical cyclones. An objective feature tracking algorithm is used to locate cyclones and the precipitation associated with these cyclones is quantified to establish their contribution to total precipitation. Climatologies are produced from the Global Precipitation Climatology Project (GPCP) daily dataset and the ERA-Interim reanalysis. The magnitude and spatial distribution of cyclone associated precipitation and their percentage contribution to total precipitation is closely comparable in both datasets. In some regions, the contribution of extratropical cyclones exceeds 90/85% of the total DJF/JJA precipitation climatology. The relative contribution of the most intensely precipitating storms to total precipitation is greater in DJF than JJA. The most intensely precipitating 10% of storms contribute over 20% of total storm associated precipitation in DJF, whereas they provide less than 15% of this total in JJA. © 2012. American Geophysical Union. All Rights Reserved.MKH is supported by the Natural Environment Research Council’s project ‘Testing and Evaluating Model Predictions of European Storms’ (TEMPEST). The precipitation composites included in the auxiliary material were produced using scripts based on the work of Jennifer L. Catto and we thank her for their use. The authors would like to thank the reviewers for their helpful comments

    Synoptic conditions conducive for compound wind-flood events in Great Britain in present and future climates

    Get PDF
    Extreme wind is the main driver of loss in North-West Europe, with flooding being the second-highest driver. These hazards are currently modelled independently, and it is unclear what the contribution of their co-occurrence is to loss. They are often associated with extra-tropical cyclones, with studies focusing on co-occurrence of extreme meteorological variables. However, there has not been a systematic assessment of the meteorological drivers of the co-occurring \textit{impacts} of compound wind-flood events. This study quantifies this using an established storm severity index (SSI) and recently developed flood severity index (FSI), applied to the UKCP18 12km regional climate simulations, and a Great Britain (GB) focused hydrological model. The meteorological drivers are assessed using 30 weather types, which are designed to capture a broad spectrum of GB weather. Daily extreme compound events (exceeding 99th percentile of both SSI and FSI) are generally associated with cyclonic weather patterns, often from the positive phase of the North Atlantic Oscillation (NAO+) and Northwesterly classifications. Extreme compound events happen in a larger variety of weather patterns in a future climate. The location of extreme precipitation events shifts southward towards regions of increased exposure. The risk of extreme compound events increases almost four-fold in the UKCP18 simulations (from 14 events in the historical period, to 55 events in the future period). It is also more likely for there to be multi-day compound events. At seasonal timescales years tend to be either flood-prone or wind-damage-prone. In a future climate there is a larger proportion of years experiencing extreme seasonal SSI and FSI totals. This could lead to increases in reinsurance losses if not factored into current modelling

    Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs

    Get PDF
    The extra-tropical response to El Nino in a "low" horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Nino. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Nino in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes
    corecore