91 research outputs found

    Molecular and morphological characterization of the tapeworm Taenia hydatigena (Pallas, 1766) in sheep from Iran

    Get PDF
    Although Taenia hydatigena is one of the most prevalent taeniid species of livestock, very little molecular genetic information exists for this parasite. Up to 100 sheep isolates of T. hydatigena were collected from 19 abattoirs located in the provinces of Tehran, Alborz and Kerman. A calibrated microscope was used to measure the larval rostellar hook lengths. Following DNA extraction, fragments of cytochrome c oxidase 1 (CO1) and 12S rRNA genes were amplified by the polymerase chain reaction method and the amplicons were subjected to sequencing. The mean total length of large and small hooks was 203.4 μm and 135.9 μm, respectively. Forty CO1 and 39 12S rRNA sequence haplotypes were obtained in the study. The levels of pairwise nucleotide variation between individual haplotypes of CO1 and 12S rRNA genes were determined to be between 0.3-3.4% and 0.2-2.1%, respectively. The overall nucleotide variation among all the CO1 haplotypes was 9.7%, and for all the 12S rRNA haplotypes it was 10.1%. A significant difference was observed between rostellar hook morphometry and both CO1 and 12S rRNA sequence variability. A significantly high level of genetic variation was observed in the present study. The results showed that the 12S rRNA gene is more variable than CO1. © 2013 Cambridge University Press

    Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method

    Get PDF
    ReviewThis study reviews the abundant research on FAO56 crop coefficients, published following introduction of the FAO56 paper in 1998. The primary goal was to evaluate, update, and consolidate the mid-season and end-season single (Kc) and basal (Kcb) crop coefficients, tabulated for many field crops in FAO56. The review found that the prevalent approach for estimating crop evapotranspiration (ETc) is the FAO56 Kc-ETo approach, i.e., the product of the Kc and reference evapotranspiration (ETo). The FAO56 Kc-ETo approach requires use of the FAO56 PM-ETo grass reference equation with appropriate crop-specific Kc and/or Kcb. Reviewed research provided various approaches to determine Kc and Kcb and used a variety of actual crop ET (ETc act) measurements. Significant attention was placed on accessing the accuracy of the field measurements and models used in these studies. Accuracy requirements, upper limits for Kc values, and related causal errors are discussed. Conceptual approaches relative to Kc transferability requirements are provided with focus on standard crop conditions and use of the FAO56 segmented Kc curve. Papers selected to update Kc∕Kcb used the FAO56 PM-ETo, provided accurate measurements to determine and partition ETc act, and satisfied transferability requirements. Selected observed Kc and Kcb values were converted to standard, sub-humid climate as adopted in FAO56. Observed values, with respect to tabulated FAO56 Kc and Kcb, were used in consolidating updated values for crops within general categories of grain legumes, fiber crops, oil crops, sugar crops, small grain cereals, maize and sorghum, and rice. Ancillary data, e.g., maximum root depth and crop height, were also collected from selected literature and tabulated. Results showed good agreement between updated and original tabulated FAO56 Kc and Kcb, confirming the reliability of the FAO56 values. This indicates change in the Kc (ETc/ETo ratio) of crops has not occurred due to climate change during the past ≈sixty years. New Kc∕Kcb data for crops, not included in FAO56, are also now presented for several oil crops and pseudocereals. The approach adopted for rice differs from FAO56 because consideration was given to the numerous rice water management practices currently used and, thus, Kc∕Kcb values for the initial season of rice were also presented. The review also observed that many research papers did not satisfy the adopted requirements in terms of ETo method and/or the accuracy of ETc act determinations and, therefore, could not be used. Thus, emphasis is placed on adopting improved accuracy and quality control in future research aimed at determining Kc data comparable to presented values. The transferability of standard Kc and Kcb has been assured for the values tabulated herein. Improved future applications of the FAO56 Kc-ETo method should consider remote sensing observations when available, particularly in defining crop growth stages at given locationsinfo:eu-repo/semantics/publishedVersio

    Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach

    Get PDF
    ReviewMany research papers on crop water requirements of vegetables have been produced since the publication of the FAO56 guidelines in 1998. A review of this literature has shown that determination of crop evapotranspiration (ETc) using the Kc-ETo approach, i.e., the product of the specific crop coefficient (Kc) by the reference evapotranspiration (ETo), is the most widely-used method for irrigation water management. Consequently, a review was made to provide updated information on the Kc values for these crops. The reviewed research provided various approaches to determine Kc in its single and dual versions. With this purpose, actual crop ET (ETc act ) was determined with lysimeters, or by performing the soil water balance using measured soil water content and computational models, or by using Bowen ratio energy balance and eddy covariance measurements, or by using remote sensing applications. When determining the basal Kc(Kcb), the partitioning of ETc act was evaluated using different approaches, though mainly using the FAO56 dual Kc method. Since the accuracy of experimentally-determined Kc and Kcb values depends upon the procedure used to compute ETo, as well as accuracy in determining and partitioning of ETc act , the adequacy of the measurement requirements for each approach was carefully reviewed. The article discusses in detail the conceptual methodology relative to crop coefficients and the requirements for transferability, namely distinguishing between actual and standard Kc and the need to appropriately use the FAO segmented Kc curve. Hence, the research papers selected to update and consolidate mid-season and end-season standard Kc and Kcb were those that computed ETo with the FAO56 PM-ETo equation; and that also used accurate approaches to determine and partition ETc act for pristine, non-stressed cropping conditions. Under these experimental conditions, the reported Kc and Kcb values relative to the mid- and end-season could be considered as transferable standard Kc and/or Kcb values after adjustment to the standard climate adopted in FAO56, where average RHmin = 45% and average u2 = 2 m s−1 over the mid-season and late season growth stages. For each vegetable crop, these standard values were then compared with the FAO56 tabulated Kc and Kcb values to define the updated values tabulated in the current article. In addition, reported ancillary data, such as maximum root zone depth, maximum crop height, and soil water depletion fraction for no water stress, were also collected from selected papers and tabulated in comparison with those given for the crops in FAO56. The presentation of updated crop coefficient results is performed by grouping the vegetables differently than in FAO56, where distinction is made according to their edible parts: (1) roots, tubers, bulbs and stem vegetables; (2) leaves and flowers vegetables; (3) fruit and pod vegetables; and (4) herbs, spices and special crops, with most of them being newly introduced herein. The updated Kc and Kcb of vegetable crops based on this review are generally coincident with those in FAO56, although slightly lower for several crops. Close agreement of selected paper values with FAO56 values provides good evidence of their quality and also confirms the reliability of the original FAO56 tabulated values. It is noteworthy that many papers surveyed from the past 20 years did not satisfy the adopted Kc requirements in terms of ETo computation method nor provide solid evidence of measurement accuracy for ETc act . It is recommended that future Kc research of vegetables should sufficiently address these issues with objectives broadened to provide more transferable data to other regions. Also, new data on vegetable Kc and Kcb values should be carefully scrutinized in the context of these results and those provided in FAO56info:eu-repo/semantics/publishedVersio

    Impact of human CA8 on thermal antinociception in relation to morphine equivalence in mice

    Get PDF
    Recently, we showed that murine dorsal root ganglion (DRG) Car8 expression is a cis-regulated eQTL that determines analgesic responses. In this report, we show that transduction through sciatic nerve injection of DRG with human wild-type carbonic anhydrase-8 using adeno-associated virus viral particles (AAV8-V5-CA8WT) produces analgesia in naive male C57BL/6J mice and antihyperalgesia after carrageenan treatment. A peak mean increase of about 4 s in thermal hindpaw withdrawal latency equaled increases in thermal withdrawal latency produced by 10 mg/kg intraperitoneal morphine in these mice. Allometric conversion of this intraperitoneal morphine dose in mice equals an oral morphine dose of about 146 mg in a 60-kg adult. Our work quantifies for the first time analgesia and antihyperalgesia in an inflammatory pain model after DRG transduction by CA8 gene therapy

    Molecular and morphological characterization of the tapeworm Taenia hydatigena (Pallas, 1766) in sheep from Iran

    Get PDF
    Although Taenia hydatigena is one of the most prevalent taeniid species of livestock, very little molecular genetic information exists for this parasite. Up to 100 sheep isolates of T. hydatigena were collected from 19 abattoirs located in the provinces of Tehran, Alborz and Kerman. A calibrated microscope was used to measure the larval rostellar hook lengths. Following DNA extraction, fragments of cytochrome c oxidase 1 (CO1) and 12S rRNA genes were amplified by the polymerase chain reaction method and the amplicons were subjected to sequencing. The mean total length of large and small hooks was 203.4 mm and 135.9 mm, respectively. Forty CO1 and 39 12S rRNA sequence haplotypes were obtained in the study. The levels of pairwise nucleotide variation between individual haplotypes of CO1 and 12S rRNA genes were determined to be between 0.3–3.4% and 0.2–2.1%, respectively. The overall nucleotide variation among all the CO1 haplotypes was 9.7%, and for all the 12S rRNA haplotypes it was 10.1%. A significant difference was observed between rostellar hook morphometry and both CO1 and 12S rRNA sequence variability. A significantly high level of genetic variation was observed in the present study. The results showed that the 12S rRNA gene is more variable than CO1

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    DLG4-related synaptopathy: a new rare brain disorder

    Get PDF
    PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    Resting State fMRI Data Classification Method Based on K-means Algorithm Optimized by Rough Set

    No full text
    Part 2: Cognitive ComputingInternational audienceWith the development of brain science, a variety of new methods and techniques continue to emerge. Functional magnetic resonance imaging (fMRI) has become one of the important ways to study the brain functional connection and of brain functional connectivity detection because of its noninvasive and repeatability. However, there are still some issues in the fMRI researches such as the amounts of data and the interference noise in the data. Therefore, how to effectively reduce the fMRI data dimension and extract data features has become one of the core content of study. In this paper, a K-means algorithm based on rough set optimization is proposed to solve these problems. Firstly, the concept of important attributes is put forward according to the characteristics of Rough Set, and the attribute importance is calculated by observing the change of attribute positive domain. Then, the best attributes reduction is selected by the attribute importance, so that these important attributes are the best attributes reduction. Finally, the K-means algorithm is used to classify the important attributes. The experiments of two datasets are designed to evaluate the proposed algorithm, and the experimental results show that the K-means algorithm based on rough set optimization has more classification accuracy than the original K-means algorithm
    corecore