20 research outputs found

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Resulting Effect of the p-Type of ZnTe: Cu Thin Films of the Intermediate Layer in Heterojunction Solar Cells: Structural, Optical, and Electrical Characteristics

    No full text
    The microstructural, electrical, and optical properties of Cu-doped and undoped ZnTe thin films grown on glass substrates are covered in this article. To determine the chemical makeup of these materials, both energy-dispersive X-ray (EDAX) spectroscopy and X-ray photoelectron spectroscopy were employed. The cubic zinc-blende crystal structure of ZnTe and Cu-doped ZnTe films was discovered using X-ray diffraction crystallography. According to these microstructural studies, the average crystallite size increased as the amount of Cu doping increased, whereas the microstrain decreased as the crystallinity increased; hence, defects were minimized. The Swanepoel method was used to compute the refractive index, and it was found that the refractive index rises as the Cu doping levels rises. The optical band gap energy was observed to decrease from 2.225 eV to 1.941 eV as the Cu content rose from 0% to 8%, and then slightly increase to 1.965 eV at a Cu concentration of 10%. The Burstein–Moss effect may be connected to this observation. The larger grain size, which lessens the dispersion of the grain boundary, was thought to be the cause of the observed increase in the dc electrical conductivity with an increase in Cu doping. In structured undoped and Cu-doped ZnTe films, there were two carrier transport conduction mechanisms that could be seen. According to the Hall Effect measurements, all the grown films exhibited a p-type conduction behavior. In addition, the findings demonstrated that as the Cu doping level rises, the carrier concentration and the Hall mobility similarly rise, reaching an ideal Cu concentration of 8 at.%, which is due to the fact that the grain size decreases grain boundary scattering. Furthermore, we examined the impact of the ZnTe and ZnTe:Cu (at Cu 8 at.%) layers on the efficiency of the CdS/CdTe solar cells

    High Performance MnO2 Nanoflower Supercapacitor Electrode by Electrochemical Recycling of Spent Batteries

    Get PDF
    MnO2 nanoflower is prepared by electrochemical conversion of Mn3O4 obtained by heat treatment of spent zinc‒carbon batteries cathode powder. The heat treated and converted powders were characterized by TGA, XRD, FTIR, FESEM and TEM techniques. XRD analyses show formation of Mn3O4 and MnO2 phases for the heat treated and converted powders, respectively. FESEM images indicate the formation of porous nanoflower structure of MnO2, while, condensed aggregated particles are obtained for Mn3O4. The energy band gap of MnO2 is obtained from UV‒Vis spectra to be 2.4 eV. The electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge‒discharge and electrochemical impedance techniques using three-electrode system. The specific capacitance of MnO2 nanoflower (309 F g−1 at 0.1 A g−1) is around six times higher than those obtained from the heat treated one (54 F g−1 at 0.1 A g−1). Moreover, it has high capacitance retention up to 93% over 1650 cycles. Impedance spectra of MnO2 nanoflower show very small resistances and high electrochemical active surface area (340 m2 g−1). The present work demonstrates a novel electrochemical approach to recycle spent zinc-carbon batteries into high value supercapacitor electrod

    Structural, optical and electrical characteristics of sulfur incorporated ZnSe thin films

    Get PDF
    In the present study, polycrystalline materials of ZnSe1-xSx (x = 0, 0.25, 0.5, 0.75 and 1) were prepared by a conventional solid-state reaction method. Thin films of ZnSe1-xSx of about 1 μm have been produced using evaporation method. The importance of ZnSe1-xSx compound is the tunability of band gap when incorporating S into the ZnSe. Adding S at the expense of Se in ZnSe to form Zn-Se-S, which has a wider energy gap window layer to permit more light to reach the junction of solar cell. Both of optical constants (n, k) and film thickness have been determined precisely in terms of envelop method. Optical absorption spectra showed that band gap values increase with increasing S content. The electrical conductivity of ZnSe1-xSx was studied and exhibit two type of variation versus temperature. The activation energy of linear portion of the low temperature range is lower than the activation energy of linear portion of high temperature range and it increases with increasing the sulfur content in all films in both temperature ranges

    Influence of ZnO on the crystallization kinetics and properties of diopside-Ca-Tschermak based glasses and glass-ceramics

    No full text
    We report on the influence of ZnO on the structural, thermal, and crystallization behavior of the diopside-Ca-Tschemak based glasses, and on the processing, microstructure, and the properties of the sintered glass ceramics. Four glasses with nominal compositions of CaMg(0.8)Al(0.4)Si(1.8)O(6), CaMg(0.75)Zn(0.05)Al(0.4)Si(1.8)O(6), CaMg(0.70)Zn(0.10)Al(0.4)Si(1.8)O(6), and CaMg(0.60)Zn(0.20)Al(0.4)Si(1.8)O(6) were obtained by melting at 1580 degrees C for 1 h. Structural and thermal behavior of the glasses was investigated by Fourier-transform infrared spectroscopy, density measurements, dilatometry, and differential thermal analysis. Nonisothermal crystallization kinetics has been employed to study the crystallization mechanism in the glasses. Sintering, crystallization, microstructure, and properties of the glass ceramics were investigated under nonisothermal heating conditions in the temperature range of 850-1000 degrees C. (c) 2008 American Institute of Physics

    Crystal structure of ethyl 2-phenyl-4(prop-2-yn-1-yloxy)-5,6,7,8-tetrahydro-pyrido[4 ',3 ':4,5]thieno[2,3-d]pyrimidine-7-carboxylate

    No full text
    In the title compound, C21H19N3O3S, the 5,6,7,8-tetrahydropyridine ring adopts a half -chair conformation. The fusedthieno[2,3-d]pyrimidine ring system is essentially planar (r.m.s. deviation = 0.001 angstrom) and forms a dihedral angle of 2.66 (6)degrees with the attached phenyl ring. The three-dimensional crystal packing is stabilized by C-H center dot center dot center dot O and C-H center dot center dot center dot N hydrogen bonds and C-H center dot center dot center dot pi interactions

    Structure and crystallization behaviour of some MgSiO3-based glasses

    No full text
    We report on the structure and crystallization behaviour of four enstatite based glasses. Two glasses with nominal compositions of Y0.125Mg0.875Si0.875B0.125O3 and Y0.125Mg0.725Ba0.15Si0.875B0.125O3 were prepared as parent glasses while the other two glasses were derived by the addition of 8 wt.% Al2O3 to the parent glass compositions, respectively. Structural features of the glasses were accessed by Fourier transform infrared spectroscopy (FTIR). Non-isothermal crystallization kinetics and thermal stability of Al2O3-free glasses were studied using differential scanning calorimetry (DSC). It has been shown that these glasses exhibit higher activation energy of viscous flow and are prone to surface crystallization. Activation energy of crystallization decreases with the addition of BaO in the glasses. Crystallization behaviour of all the experimental glasses in the temperature range of 800–1000 °C was followed by X-ray diffraction (XRD) and FTIR. Clinoenstatite and orthoenstatite were the major crystalline phases in the BaO-free glass-ceramics while BaO-containing compositions featured the early formation and stabilization of protoenstatite

    Crystal structure of (4-methoxyphenyl)[(4-methoxyphenyl) phosphonato]dioxidophosphate(1-) 2-amino-6-benzyl-3-ethoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c] pyridin-6-ium

    No full text
    The asymmetric unit of the title mol-ecular salt, C17H21N2O2S+ center dot C14H15O7P2- , comprises two cations and two anions. Each cation features an intra-molecular N-H center dot center dot center dot O hydrogen bond, which closes an S(6) ring; in each case the hydro-pyridine ring adopts a half-chair conformation. In the anions, the dihedral angles between the aromatic rings are 64.1 (2) and 54.9 (2)degrees. In each case, the diphosphate groups are close to eclipsed [C-P center dot center dot center dot P-C pseudo-torsion angles = 11.6 (2) and -19.3 (2)degrees]. One of the meth-oxy groups in each anion is disordered over two orientations in a 0.539 (18):0.461 (18) ratio in one anion and 0.82 (2):0.18 (2) in the other. In the crystal, O-H center dot center dot center dot O and N-H center dot center dot center dot O hydrogen bonds link the components into [100] chains. Numerous C-H center dot center dot center dot O inter-actions cross-link the chains into a three-dimensional network

    Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system

    No full text
    Mesoporous carbon nanospheres are produced from biowaste, Allium cepa peels, well known as “onion” dry peels using the catalyst-free pyrolysis method. The synthesis process involves an unusable bio-precursor that is accumulated in millions of tons per year. The obtained materials show nanosphere morphology with particles size of 63–66 nm and surface area up to 2962 m2 g−1. After pyrolysis at 800, 900, and 1000 °C, the carbon nanospheres are directly applied for supercapacitance study without further activation processes. The electrochemical studies show promising results such as high electrode capacitance of 189.4 at 0.1 A g−1 in 3 M KOH. Moreover, full cell symmetrical supercapacitor is fabricated and further investigated under a wide potential window up to 1.6 V. An excellent electrochemical behavior is observed for the supercapacitor in terms of high energy density of 22.1 Wh kg−1 at a power density of 39.6 W kg−1, high cyclic stability of 78%, and high coulombic efficiency of 90% over 4500 cycles at 0.5 A g−1. These studies support carbon nanospheres obtained from Allium cepa wastes to be used as promising materials for supercapacitor application
    corecore